Math, asked by sharmawagmi1312, 3 months ago

Solve (1+tan^2 theta)(1-sin theta)(1+sin theta) (1+cos theta)(1-cos theta) (1+cot^2 theta)

Answers

Answered by Intelligentcat
13

Here, We have given equation :

\implies \bf (1 + Tan^{2} \: \theta ) (1 - sin \: \theta) (1 + sin \: \theta) (1 - cos \: \theta) (1 + cos \: \theta) (1 + cot^{2} \: \theta) \\ \\

Let's solve it :

Using Identities :

\bullet \: \: {\boxed{\sf {Sin^{2} \: \theta + Cos^{2} \: \theta = 1}}} \\ \\

\bullet \: \: {\boxed{\sf {1 - Sin^{2} \: \theta = Cos^{2} \: \theta }}} \\ \\

\bullet \: \: {\boxed{\sf {Sin^{2} \: \theta = 1 - Cos^{2} \: \theta}}} \\ \\

Ratio Relation Used :

\bullet \: \: {\boxed{\sf {Tan^{2} \: \theta = \dfrac{Sin^{2} \: \theta}{Cos^{2} \: \theta }}}} \\ \\

\bullet \: \: {\boxed{\sf {Cot^{2} \: \theta = \dfrac{Cos^{2} \: \theta}{Sin^{2} \: \theta }}}} \\ \\

Now, solving it :

\bullet \: \: {\sf {Tan^{2} \: \theta = \dfrac{Sin^{2} \: \theta}{Cos^{2} \: \theta }}} \\ \\

\implies \sf (1 + Tan^{2} \: \theta ) (1 - sin \: \theta) (1 + sin \: \theta) (1 - cos \: \theta) (1 + cos \: \theta) (1 + cot^{2} \: \theta) \\ \\

\implies \sf (1 + \dfrac{sin^{2} \: \theta}{cos^{2} \: \theta} ) (1 - sin \: \theta) (1 + sin \: \theta) (1 - cos \: \theta) (1 + cos \: \theta) (1 + cot^{2} \: \theta) \\ \\

\implies \sf (1 + \dfrac{cos^{2} \: \theta + sin^{2} \: \theta}{cos^{2} \: \theta} ) (1 - sin \: \theta) (1 + sin \: \theta) (1 - cos \: \theta) (1 + cos \: \theta) (1 + cot^{2} \: \theta) \\ \\

Using Identity :

\implies \sf (a + b)(a -b) = a^{2} - b^{2} \\ \\

\implies \sf (1 + \dfrac{cos^{2} \: \theta + sin^{2} \: \theta}{cos^{2} \: \theta} ) (1)^{2} - (sin \: \theta)^{2} (1 - cos \: \theta) (1 + cos \: \theta) (1 + cot^{2} \: \theta) \\ \\

\implies \sf (\dfrac{cos^{2} \: \theta + sin^{2} \: \theta}{cos^{2} \: \theta} ) (1 - sin^{2} \: \theta) (1 - cos \: \theta) (1 + cos \: \theta) (1 + cot^{2} \: \theta) \\ \\

\therefore\sf (a + b)(a -b) = a^{2} - b^{2} \\ \\

\implies \sf (\dfrac{cos^{2} \: \theta + sin^{2} \: \theta}{cos^{2} \: \theta} ) (1 - sin^{2} \: \theta) (1)^{2} - (cos \: \theta)^{2} (1 + cot^{2} \: \theta) \\ \\

\implies \sf ( \dfrac{cos^{2} \: \theta + sin^{2} \: \theta}{cos^{2} \: \theta} ) (1 - sin^{2} \: \theta) 1 - (cos^{2} \: \theta) (1 + cot^{2} \: \theta) \\ \\

\implies \sf (\dfrac{cos^{2} \: \theta + sin^{2} \: \theta}{cos^{2} \: \theta} ) (1 - sin^{2} \: \theta) 1 - (cos^{2} \: \theta) (1 + \dfrac{cos^{2} \: \theta}{sin^{2} \: \theta}) \\ \\

\bullet \: \: {\sf {Cot^{2} \: \theta = \dfrac{Cos^{2} \: \theta}{Sin^{2} \: \theta }}} \\ \\

\implies \sf ( \dfrac{cos^{2} \: \theta + sin^{2} \: \theta}{cos^{2} \: \theta} ) (1 - sin^{2} \: \theta) 1 - (cos^{2} \: \theta) ( \dfrac{sin^{2} \: \theta + cos^{2} \: \theta}{sin^{2} \: \theta}) \\ \\

\implies \sf ( \dfrac{1}{cos^{2} \: \theta} ) (1 - sin^{2} \: \theta) 1 - (cos^{2} \: \theta) ( \dfrac{1}{sin^{2} \: \theta}) \\ \\

\bullet \: \: {\sf {1 - Sin^{2} \: \theta = Cos^{2} \: \theta }} \\ \\

\implies \sf ( \dfrac{1}{cos^{2} \: \theta} ) (cos^{2} \: \theta) (1 - (cos^{2} \: \theta) ( \dfrac{1}{sin^{2} \: \theta}) \\ \\

\implies \sf (1) (1 - (cos^{2} \: \theta) ( \dfrac{1}{sin^{2} \: \theta}) \\ \\

\bullet \: \: {\sf {Sin^{2} \: \theta = 1 - Cos^{2} \: \theta}} \\ \\

\implies \sf (1) (sin^{2} \: \theta) ( \dfrac{1}{sin^{2} \: \theta}) \\ \\

\implies \sf (1) \times (1) \\ \\

\implies \sf 1  \\ \\

{\boxed{\bf{Required \: Answer = {\red{1}}}}} \\

Answered by Sankalp050
2

Answer:

(1 + tan ^{2}  \theta)(1 - sin \theta)(1 + sin \theta)(1 + cos \theta)(1 - cos \theta)(1 +  {cot}^{2}  \theta) \\  \\  = (1 +  {tan}^{2}  \theta)(1 +  {cot}^{2}  \theta)(1 -  {sin}^{2}  \theta)(1 -  {cos}^{2}  \theta) \\  \\  = (1 +  {tan}^{2 }  \theta)(1 +  {cot}^{2}  \theta) {cos}^{2}  \theta {sin}^{2}  \theta \\  \\  = ( { \cos}^{2}  \theta {sin}^{2}  \theta+ { \cos}^{2}  \theta {sin}^{2}  \theta {cot}^{2}    \theta  + { \cos}^{2}  \theta {sin}^{2}  \theta {tan}^{2}  \theta +{ \cos}^{2}  \theta {sin}^{2}  \theta ) \\  \\  = 2{ \cos}^{2}  \theta {sin}^{2}  \theta+ {cos}^{4}  \theta +  {sin}^{4}  \\  \\  =  {( {sin}^{2}  \theta +  {cos}^{2}  \theta)}^{2}  \\  \\  =  {1}^{2}  \\  \\  = 1

Similar questions