Math, asked by TheEmeraldGirl, 1 month ago

Solve : ( 1 + tan²θ )( 1 - sin²θ )( 1 + sin²θ )

Answers

Answered by SarcasticBunny
51

Given :-

  • ( 1 + tan²θ )( 1 - sin²θ )( 1 + sin²θ )

To Do :-

  • Solve it.

Solution :-

❍ To calculate the given expression we must know that ::

  • 1 + tan²θ  = sec²θ
  • ( a + b )( a - b ) = a² - b²
  • 1 - sin²θ  = cos²θ

Finding the solution :-

⇝ ( 1 + tan²θ )( 1 - sin²θ )( 1 + sin²θ )

  • According to the information we have, we can write the first bracket as sec²θ  

⇝ sec²θ( 1 - sin²θ )( 1 + sin²θ )  

  • According to the property of ( a + b )( a - b ) = a² - b²  

⇝ sec²θ( 1² - sin²θ )

⇝ sec²θ × ( 1 - sin²θ )

  • According to the information we have, we can write the bracket as cos²θ  

⇝ sec²θ × cos²θ

⇝ 1/cos²θ × cos²θ

⇝ 1

More to know :-

\boxed{\begin{minipage}{7 cm}Fundamental Trigonometric Identities \\ \\$\sin^2\theta + \cos^2\theta=1 \\ \\1+\tan^2\theta = \sec^2\theta \\ \\1+\cot^2\theta = \text{cosec}^2 \, \theta$\end{minipage}}

Note : To see clearly, view the answer on https://brainly.in/question/41920659

Answered by AainaJain
1

Answer:

Given :-

( 1 + tan²θ )( 1 - sin²θ )( 1 + sin²θ )

To Do :-

Solve it.

Solution :-

❍ To calculate the given expression we must know that ::

1 + tan²θ  = sec²θ

( a + b )( a - b ) = a² - b²

1 - sin²θ  = cos²θ

Finding the solution :-

⇝ ( 1 + tan²θ )( 1 - sin²θ )( 1 + sin²θ )

According to the information we have, we can write the first bracket as sec²θ  

⇝ sec²θ( 1 - sin²θ )( 1 + sin²θ )  

According to the property of ( a + b )( a - b ) = a² - b²  

⇝ sec²θ( 1² - sin²θ )

⇝ sec²θ × ( 1 - sin²θ )

According to the information we have, we can write the bracket as cos²θ  

⇝ sec²θ × cos²θ

⇝ 1/cos²θ × cos²θ

⇝ 1

Similar questions