Math, asked by guyvishal1367, 11 months ago

Solve (1-tanx)(1+sin2x)=1+tanx

Answers

Answered by Swarup1998
7

Given :

  • (1-tanx)(1+sin2x)=1+tanx

To find : the solution

Solution :

Now, (1-tanx)(1+sin2x)=1+tanx

\Rightarrow 1+sin2x=\frac{1+tanx}{1-tanx}

\Rightarrow sin^{2}x+cos^{2}x+2\:sinx\:cosx=\frac{1+tanx}{1-tanx}

[ since sin^{2}x+cos^{2}x=1 ]

\Rightarrow (sinx+cosx)^{2}=\frac{1+tanx}{1-tanx}

\Rightarrow cos^{2}x\:(\frac{sinx}{cosx}+1)^{2}=\frac{1+tanx}{1-tanx}

[ taking cosx common ]

\Rightarrow cos^{2}x\:(tanx+1)^{2}=\frac{1+tanx}{1-tanx}

\Rightarrow cos^{2}x\:(1+tanx)=\frac{1}{1-tanx}

\Rightarrow cos^{2}x=\frac{1}{(1-tanx)(1+tanx)}

\Rightarrow \frac{1}{sec^{2}x}=\frac{1}{1-tan^{2}x}

[ since cosx=\frac{1}{secx} ]

\Rightarrow \frac{1}{1+tan^{2}x}=\frac{1}{1-tan^{2}x}

[ since sec^{2}x-tan^{2}x=1 ]

\Rightarrow \frac{1-tan^{2}x}{1+tan^{2}x}=1

\Rightarrow cos2x=1

[ since cos2x=\frac{1-tan^{2}x}{1+tan^{2}x} ]

\Rightarrow cos2x=cos0

\Rightarrow 2x=0

\Rightarrow x=0

Answer :

  • Required solution is x=0^{\circ}
Similar questions