Math, asked by ajoyettyoszgvx, 6 months ago

solve 1/x -1/x-2 = 3 ; x,y ≠ 0​

Answers

Answered by atharvjaiswal38
0

Step-by-step explanation:

bxud e x d dbd dhd d. ddbd sg s snsnd yd d dj d

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Questions :

 \rm solve \to \:  \\ \bigstar   \bf\frac{1}{x}  -  \frac{1}{x - 2}  = 3

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{w}\purple{E}\orange{R}}}}

 \\  \implies \sf \:  \frac{1}{x}  -  \frac{1}{x - 2}  = 3

  \\ \implies \large \sf \:  \frac{(x - 2) - x}{(x - 2)(x)}  = 3

 \\  \implies \large \sf \:  \frac{ \cancel{x} \:  - 2 -  \cancel{x}}{ {x}^{2} - 2x }  = 3

 \\  \implies \large \sf \:  \frac{ - 2}{ {x}^{2} - 2x }  = 3

  \\ \implies \large \sf \:  - 2 = 3( {x}^{2}  - 2x)

 \\  \implies \large \sf \:  - 2 = 3 {x}^{2}  - 6x

 \implies \large \sf \:  - 2 - 3 {x}^{2}  + 6x = 0

  \\ \implies \large \sf \:  - 3 {x}^{2}  + 6x - 2 = 0

 \\  \implies \large \sf \: 3 {x}^{2}  - 6x + 2 = 0

By using formula method :

 \\  \implies \large \sf \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

 \\  \implies \large \sf \: x =  \frac{6  \pm \sqrt{ {6}^{2}  - 4 \times 3 \times 2} }{2 \times 3}

  \\ \implies \large \sf \: x =  \frac{6 \pm \sqrt{36 - 24} }{6}

 \\  \implies \large \sf \: x =  \:  \frac{6 \pm \sqrt{12} }{6}

 \\  \implies \large \sf \: x =  \frac{6 \pm2 \sqrt{3} }{6}

  \\ \implies \large \sf \: x =   \frac{ 2(3 \pm \sqrt{3} )}{2 \times 3}

 \\  \implies \large \sf \: x =  \frac{3 \pm \sqrt{3} }{3}

 \\  \implies \large \sf \ x \:  =  \frac{ \sqrt{3} \times  \sqrt{3} \pm \sqrt{3}   }{ \sqrt{3}  \times  \sqrt{3} }

  \\ \implies \large \sf \: x = \frac{ \sqrt{3} ( \sqrt{3} \pm1) }{ \sqrt{3}  \times  \sqrt{3} }

  \\ \implies \large \sf \: x =  \frac{ \sqrt{3} \pm1 }{ \sqrt{3} }

  \large \boxed{ \red \bigstar{ \bf{root \: are \: x =  \frac{ \sqrt{3} + 1 }{ \sqrt{3} }  \: and \: x =  \frac{ \sqrt{3}  - 1}{ \sqrt{3} } }}}

Similar questions