Math, asked by tazanna29, 8 months ago

solve 1/x + 1/(x-6) = 1/4​

Answers

Answered by shivampatil080
1

Answer:

Step by step solution :

STEP1:

1 Simplify — 4

Equation at the end of step1:

1 1 1 (— + —) - — = 0 x 6 4

STEP2:

1 Simplify — 6

Equation at the end of step2:

1 1 1 (— + —) - — = 0 x 6 4

STEP3:

1 Simplify — x

Equation at the end of step3:

1 1 1 (— + —) - — = 0 x 6 4

STEP4:Calculating the Least Common Multiple

 4.1    Find the Least Common Multiple

      The left denominator is :       x 

      The right denominator is :       6 

        Number of times each prime factor

        appears in the factorization of: Prime 

 Factor  Left 

 Denominator  Right 

 Denominator  L.C.M = Max 

 {Left,Right} 20113011 Product of all 

 Prime Factors 166

                  Number of times each Algebraic Factor

            appears in the factorization of:    Algebraic    

    Factor     Left 

 Denominator  Right 

 Denominator  L.C.M = Max 

 {Left,Right}  x 101

      Least Common Multiple:

      6x 

Calculating Multipliers :

 4.2    Calculate multipliers for the two fractions

    Denote the Least Common Multiple by  L.C.M 

    Denote the Left Multiplier by  Left_M 

    Denote the Right Multiplier by  Right_M 

    Denote the Left Deniminator by  L_Deno 

    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 6

   Right_M = L.C.M / R_Deno = x

Making Equivalent Fractions :

 4.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

L. Mult. • L. Num. 6 —————————————————— = —— L.C.M 6x R. Mult. • R. Num. x —————————————————— = —— L.C.M 6x

Adding fractions that have a common denominator :

 4.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

6 + x x + 6 ————— = ————— 6x 6x

Equation at the end of step4:

(x + 6) 1 ——————— - — = 0 6x 4

STEP5:Calculating the Least Common Multiple

 5.1    Find the Least Common Multiple

      The left denominator is :       6x 

      The right denominator is :       4 

        Number of times each prime factor

        appears in the factorization of: Prime 

 Factor  Left 

 Denominator  Right 

 Denominator  L.C.M = Max 

 {Left,Right} 21223101 Product of all 

 Prime Factors 6412

                  Number of times each Algebraic Factor

            appears in the factorization of:    Algebraic    

    Factor     Left 

 Denominator  Right 

 Denominator  L.C.M = Max 

 {Left,Right}  x 101

      Least Common Multiple:

      12x 

Calculating Multipliers :

 5.2    Calculate multipliers for the two fractions

    Denote the Least Common Multiple by  L.C.M 

    Denote the Left Multiplier by  Left_M 

    Denote the Right Multiplier by  Right_M 

    Denote the Left Deniminator by  L_Deno 

    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 2

   Right_M = L.C.M / R_Deno = 3x

Making Equivalent Fractions :

 5.3      Rewrite the two fractions into equivalent fractions

L. Mult. • L. Num. (x+6) • 2 —————————————————— = ————————— L.C.M 12x R. Mult. • R. Num. 3x —————————————————— = ——— L.C.M 12x

Adding fractions that have a common denominator :

 5.4       Adding up the two equivalent fractions

(x+6) • 2 - (3x) 12 - x ———————————————— = —————— 12x 12x

Equation at the end of step5:

12 - x —————— = 0 12x

STEP6:When a fraction equals zero

 6.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

12-x ———— • 12x = 0 • 12x 12x

Now, on the left hand side, the  12x  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

   12-x  = 0

Solving a Single Variable Equation:

 6.2      Solve  :    -x+12 = 0 

 Subtract  12  from both sides of the equation : 

                      -x = -12

Multiply both sides of the equation by (-1) :  x = 12

Similar questions