Math, asked by reetdarpanchopra, 4 months ago

Solve (1 + x^2) dy/dx + 2xy = cosx

Answers

Answered by BrainlyPopularman
43

GIVEN :–

• Diffrential equation –

  \\ \implies \bf(1 + x^2)  \dfrac{dy}{dx} + 2xy = cosx \\

TO FIND :

• Solution of diffrential equation = ?

SOLUTION :

  \\ \implies \bf(1 + x^2)  \dfrac{dy}{dx} + 2xy = cosx \\

  \\ \implies \bf\dfrac{dy}{dx} + \dfrac{2x}{(1 + x^2)}y =  \dfrac{cosx}{(1 + x^2)} \\

• Compare with –

  \\ \implies \bf\dfrac{dy}{dx} +Py =  Q \\

• So –

  \\ \implies \bf P =\dfrac{2x}{(1 + x^2)} \:  \: and \:  \: Q = \dfrac{cosx}{(1 + x^2)} \\

• We know that –

  \\ \implies \bf I.F. = e^{\int P.dx} \\

  \\ \implies \bf I.F. = e^{\int \frac{2x}{(1 + x^2)}dx} \\

  \\ \implies \bf I.F. = e^{ \log{(1 + x^2)}} \\

  \\ \implies \large{ \boxed{\bf I.F. = 1 +  {x}^{2} }}\\

Solution :

  \\ \implies \bf y(I.F.) =  \int(I.F)Q.dx + c\\

  \\ \implies \bf y(1 +  {x}^{2} ) =  \int\dfrac{cosx}{(1 + x^2)} \times (1 +  {x}^{2}) .dx + c\\

  \\ \implies \bf y(1 +  {x}^{2} ) =  \int\cos(x) .dx + c\\

  \\ \implies \large { \boxed{\bf y(1 +  {x}^{2} ) =  \sin(x) + c}}\\

Answered by sonam6141
50

Answer:

(1+x 2 ) dx

___ +2xy=cos x

dy

dx 2xy cos x

__ + ___ == _____

dy 1+x² 1+x²

dx

__ + Py = Q

dy

P= 2x y cos x

___ , Q == _____

1+x² 1+x²

2x

If == e∫ ____

1+x²

∴IF= 1 + x ²

y × IF = ∫Q × IF dx+c

cos x

y×(1+x ² )=∫____ ×( 1+x 2 ) dx + c

1+x ²

y×(1+x 2 )=∫cosxdx+c

y(1+x 2 )=sinx+c

Similar questions