Math, asked by ashaanilkumar76, 1 year ago

SOLVE :(1-x^2)dy/dx-xy=1.?

Answers

Answered by cutejatti
7

I hope this is helpful for you

Attachments:

ashaanilkumar76: Can you explain this
cutejatti: no
cutejatti: sorry
cutejatti: plz sorry
mohdarshadchaup5xi85: hlo
Answered by Anonymous
3

The solution of the differential equation

(1 -  {x}^{2} ) \frac{dy}{dx}  - xy = 1

is given by

y =   \frac{ {sin}^{ - 1} x + c}{ \sqrt{1 -  {x}^{2} } }

  • We have,

(1 -   {x}^{2} ) \frac{dy}{dx}  - xy = 1

Now, dividing the above equation by

(1 -  {x}^{2} )

we get,

 \frac{dy}{dx}   -  \frac{x}{1 -  {x}^{2}}y =  \frac{1}{1 -  {x}^{2} }

  • Now, it is in the form of

 \frac{dy}{dx}  + p(x)y \:  = q(x)

where

p(x) =   \frac{ - x}{1 -  {x}^{2} } \: and \: q(x) =  \frac{1}{1 -  {x}^{2} }

  • Now, for solving this equation we will find integrating factor

i.f \:  =  {e}^{∫p(x)dx}

therefore,

i.f =  {e}^{∫ \frac{ - x}{1 -  {x}^{2} }dx }

Let 1 - x² = t - (1)

-xdx = dt/2

 =  {e}^{ ∫ \frac{1}{2t}dt}

 =  {e}^{ \frac{1}{2}  log(t)  }

 =  {e}^{ log( \sqrt{t} ) }

Now putting the value of 't' from (1) we get,

i.f =  {e}^{ log( \sqrt{1 -  {x}^{2} } ) }

i.f =  \sqrt{1 -  {x}^{2} }

  • Now the solution of the differential equation is given by,

y(i.f) \:  = ∫q(x)(i.f)dx

therefore,

y( \sqrt{1 -  {x}^{2} })  = ∫ \frac{1}{1 -  {x}^{2} } ( \sqrt{1 -  {x}^{2} } )dx

y \sqrt{1 -  {x}^{2} }  = ∫ \frac{1}{ \sqrt{1 -  {x}^{2} } } dx

y \sqrt{1 -  {x}^{2} }  =  {sin}^{ - 1} x + c

hence the solution is,

y =   \frac{ {sin}^{ - 1} x + c}{ \sqrt{1 -  {x}^{2} } }

Similar questions