Math, asked by sanjay1997, 1 year ago

Solve (1+y2)dx = (tan-1y-x)dy

Answers

Answered by tarun0001
15
Hope u can understand now
Attachments:
Answered by dk6060805
1

Result is xe^m = me^m - e^m + cxtan^{-1}x = e^{tan^{-1}x}(tan^{-1}x - 1) + c

Step-by-step explanation:

(1+y^2)dx = (tan^{-1}y-x)dy

\frac {dy}{dx} = \frac {1+y^2}{tan^{-1}y-x}

\frac {dx}{dy} = \frac {tan^{-1}y-x}{1+y^2}

\frac {dx}{dy}+\frac {x}{1+y^2} = \frac {tan^{-1}y}{1+y^2}

It proves to be a Linear Differential Equation-

P = \frac {1}{1+y^2}

Integrating factor ,

e^{\int p.dy} = e^{\int \frac {1}{1+y^2}dy} = e^{tan^-^1y}

Finally the solution becomes,

xe^{tan^-^1y}=\int e^{tan^{-1}y}\frac {tan^{-1}y}{1+y^2}dy + c

As tan^{-1}y = m

So, \frac {1}{1+y^2}dy = dm

xe^m = \int e^m.mdm + c

= m\int e^mdm - \int (\frac {d}{dm}m\int e^m)dm + c

= me^m - \int 1.e^mdm + c

= xe^m = me^m - e^m + cxtan^{-1}x = e^{tan^{-1}x}(tan^{-1}x - 1) + c

Similar questions