Math, asked by Anonymous, 10 months ago

Solve 10th and 4th ......​

Attachments:

Answers

Answered by shadowsabers03
14

4.  Given,

\longrightarrow\sf{f(x)=\sqrt{\log_{10}x^2}}

Actually we have to find the domain of \sf{f(x),} the set of values of \sf{x} for which \sf{f(x)} is real.

We know the function \sf{f(x)=\sqrt x} is defined for \sf{x\geq0.} Then we have,

\longrightarrow\sf{\log_{10}x^2\geq0}

Taking antilogs,

\longrightarrow\sf{x^2\geq10^0}

\longrightarrow\sf{x^2\geq1}

\longrightarrow\sf{x^2-1\geq0}

\longrightarrow\sf{(x-1)(x+1)\geq0}

\Longrightarrow\sf{\underline{\underline{x\leq-1\quad OR\quad x\geq1}}}

Hence,

\longrightarrow\sf{\underline{\underline{x\in(-\infty,\ -1]\cup[1,\ \infty)}}}

10.  Given,

\longrightarrow\sf{f(x)=\sqrt{\log_{\frac{1}{2}}\left(\dfrac{x-1}{x+5}\right)}}

Here we also have to find the domain of \sf{f(x).} Then,

\longrightarrow\sf{\log_{\frac{1}{2}}\left(\dfrac{x-1}{x+5}\right)\geq0}

Because \sf{f(x)=\sqrt x} is defined for \sf{x\geq0.}

Since \sf{\log_ba=\dfrac{\log_{10}a}{\log_{10}b},}

\longrightarrow\sf{\dfrac{\log_{10}\left(\dfrac{x-1}{x+5}\right)}{\log_{10}\left(\dfrac{1}{2}\right)}\geq0}

\longrightarrow\sf{\dfrac{\log_{10}\left(\dfrac{x-1}{x+5}\right)}{\log_{10}\left(2^{-1}\right)}\geq0}

\longrightarrow\sf{\dfrac{\log_{10}\left(\dfrac{x-1}{x+5}\right)}{-\log_{10}\left(2\right)}\geq0}

\longrightarrow\sf{\dfrac{\log_{10}\left(\dfrac{x-1}{x+5}\right)}{\log_{10}\left(2\right)}\leq0}

Well denominator is a positive real number here.

\longrightarrow\sf{\log_{10}\left(\dfrac{x-1}{x+5}\right)}\leq0}

Taking antilogs,

\longrightarrow\sf{\dfrac{x-1}{x+5}\leq10^0}

\longrightarrow\sf{\dfrac{x-1}{x+5}\leq1}

\longrightarrow\sf{\dfrac{x-1}{x+5}-1\leq0}

\longrightarrow\sf{\dfrac{-6}{x+5}\leq0}

\longrightarrow\sf{\dfrac{6}{x+5}\geq0}

This implies the denominator should also be positive, since the numerator is positive. Hence,

\longrightarrow\sf{x+5\ \textgreater\ 0}

\longrightarrow\sf{x\ \textgreater\ -5}

\longrightarrow\sf{x\in(-5,\ \infty)\quad\quad\dots(1)}

But the function \sf{f(x)=\log_{10}x} is defined for \sf{x\ \textgreater\ 0.} Hence from \sf{f(x)=\log_{10}\left(\dfrac{x-1}{x+5}\right),}

\longrightarrow\sf{\dfrac{x-1}{x+5}\ \textgreater\ 0}

Case 1:- Both the numerator and denominator should be positive at one time.

\longrightarrow\sf{x-1\ \textgreater\ 0\quad AND\quad x+5\ \textgreater\ 0}

\longrightarrow\sf{x\ \textgreater\ 1\quad AND\quad x\ \textgreater\ -5}

\Longrightarrow\sf{x\ \textgreater\ 1}

Case 2:- Both the numerator and denominator should be negative at one time.

\longrightarrow\sf{x-1\ \textless\ 0\quad AND\quad x+5\ \textless\ 0}

\longrightarrow\sf{x\ \textless\ 1\quad AND\quad x\ \textless\ -5}

\Longrightarrow\sf{x\ \textless\ -5}

Thus,

\longrightarrow\sf{x\ \textless\ -5\quad OR\quad x\ \textgreater\ 1}

\longrightarrow\sf{x\in(-\infty,\ -5)\cup(1,\ \infty)\quad\quad\dots(2)}

Set of values of \sf{x} is given by intersection of (1) and (2).

\longrightarrow\sf{x\in(-5,\ \infty)\cap[(-\infty,\ -5)\cup(1,\ \infty)]}

\longrightarrow\sf{x\in[(-5,\ \infty)\cap(-\infty,\ -5)]\cup[(-5,\ \infty)\cap (1,\ \infty)]}

\longrightarrow\sf{\underline{\underline{x\in(1,\ \infty)}}}

Attachments:
Similar questions