Math, asked by judemon, 3 months ago

Solve 10y (6y + 21) ÷ 5(2y+7)​

Answers

Answered by SUNNY90850
38

\tt\red{Question}\implies 10y(6y+21) \div  5(2y+7)

\tt\red{To \: Find}\implies Division Calculation/Equation.

\purple{━━━━━━━━━━━━━━━━━━━━━━━━━━}

\implies\frac{60y^{2}+210y}{5}\left(2y+7\right)  \\  \\  \\  \implies\frac{\left(60y^{2}+210y\right)\left(2y+7\right)}{5}  \\  \\  \\  \implies \frac{120y^{3}+420y^{2}+420y^{2}+1470y}{5}  \\  \\  \\  \implies \frac{120y^{3}+840y^{2}+1470y}{5}  \\  \\  \\  \implies  { \underbrace{ \underline{ \overbrace\red{ \boxed{\mathfrak{6y\left(2y+7\right)^{2}}}}}}}

\purple{━━━━━━━━━━━━━━━━━━━━━━━━━━}

⠀⠀⠀⠀⠀⠀⠀⠀★Regards★

Answered by SugarCrash
45
Answer :

\large \implies \tt 6y

Solution :

To solve :

\tt \large \: \: \: \: \implies \large \frac{10y (6y + 21)}{5(2y+7)}

Let's solve ,

\sf \: \: \implies \frac{10y (6y + 21)}{5(2y+7)} \\

\\ ::\implies \sf \frac{(2y\times \cancel{5}) (6y + 21)}{ \cancel{5} ((2y+7)} \\

 \\ \sf ::\implies \frac{2y (6y + 21)}{(2y+7)} \\

• Opening brackets by multiplying inside
 \sf ::\implies \frac{ 12y^2 + 42y}{2y+7} \\

• Taking 6y common from numerator.
 \sf ::\implies \frac{6y \cancel{(2y+7)}}{\cancel{(2y+7)}} \\

 \\ ::\implies \sf \boxed{\sf \pink \sf{6y}}

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 
Similar questions