Math, asked by Muthadipriyatham, 1 year ago

solve 12th one fast....​

Attachments:

Answers

Answered by shadowsabers03
0

\displaystyle\longrightarrow\sf {(2\log 5+\log 4^2+3\log 2)-2=m\log 2}

\quad

\displaystyle\longrightarrow\sf {(\log 5^2+\log 4^2+\log 2^3)-\log 2^m=2}

\quad

\displaystyle\longrightarrow\sf {\log\left (\dfrac {5^2\times4^2\times 2^3}{2^m}\right)=2}

\quad

\displaystyle\longrightarrow\sf {\log\left (\dfrac {25\times16\times 8}{2^m}\right)=2}

\quad

\displaystyle\longrightarrow\sf {\dfrac {25\times16\times 8}{2^m}=10^2}

\quad

\displaystyle\longrightarrow\sf {\dfrac {25\times16\times 8}{100}=2^m}

\quad

\displaystyle\longrightarrow\sf {2^m=32}

\quad

\displaystyle\Longrightarrow\sf {\underline {\underline {m=5}}}

Similar questions