Math, asked by brains953, 1 year ago

Solve: 144y^4 - 337y^2 + 144= 0​

Attachments:

Answers

Answered by Anonymous
3
I hope it helps you.........
PLEASE MARK IT AS BRAINLIEST
Attachments:

brains953: Thank you so much!
Anonymous: PLEASE MARK IT AS BRAINLIEST
brains953: there's no option here.. how to mark?
brains953: I don't know how it's done
Answered by sharonr
0

144y^4-337y^2+144=0\quad :\quad y=\frac{4}{3},\:y=-\frac{4}{3},\:y=\frac{3}{4},\:y=-\frac{3}{4}

Solution:

Given that,

144y^4-337y^2+144 = 0\\\\\mathrm{Let\:}u=y^2\\\\144u^2-337u+144 =0\\

\mathrm{Factor}\:144u^2-337u+144

\mathrm{Break\:the\:expression\:into\:groups}\\\\\left(144u^2-81u\right)+\left(-256u+144\right) = 0\\\\\mathrm{Factor\:out\:}9u\mathrm{\:from\:}144u^2-81u\mathrm{:\quad }9u\left(16u-9\right)\\\\

\mathrm{Factor\:out\:}-16\mathrm{\:from\:}-256u+144\mathrm{:\quad }-16\left(16u-9\right)\\\\9u\left(16u-9\right)-16\left(16u-9\right) = 0\\\\\mathrm{Factor\:out\:common\:term\:}16u-9\\\\\left(16u-9\right)\left(9u-16\right) = 0\\\\\mathrm{Substitute\:back}\:u=y^2\\\\\left(16y^2-9\right)\left(9y^2-16\right) = 0\\

\mathrm{Factor}\:16y^2-9:\quad \left(4y+3\right)\left(4y-3\right)\\\\Therefore\\\\\left(4y+3\right)\left(4y-3\right)\left(9y^2-16\right) = 0\\\\\mathrm{Factor}\:9y^2-16:\quad \left(3y+4\right)\left(3y-4\right)\\\\Therefore\\\\\left(4y+3\right)\left(4y-3\right)\left(3y+4\right)\left(3y-4\right) = 0\\\\Therefore,\\\\y = \pm \frac{3}{4} \\\\y = \pm \frac{4}{3}

Learn more:

Solve the pair of linear equation

4(x-y)+3y-5=0 and 5x-2(x-y)-12=0​

https://brainly.in/question/13228902

Solve the equation ax^2+ 2abx =0 , a, b is not equal to 0 using factorization ​

https://brainly.in/question/14305925

Similar questions