Math, asked by Draxillus, 1 year ago

solve 14th one,with proper explanation.


Silly answer will be reported

Attachments:

Answers

Answered by Swarup1998
19

ans \\  \\ given \:  \:  \: \frac{ {sin}^{4} \alpha  }{a}  +  \frac{ {cos}^{4} \alpha  }{b}  =  \frac{1}{a + b}  \\  \\ or \:  \:  \frac{  { ({sin}^{2} \alpha ) }^{2}   }{a}  + \frac{ {(1 -  {sin}^{2}  \alpha )}^{2} }{b}  \\  \\ let \: us \: consider \:  {sin}^{2}  \alpha  = x \\  \\ then \: we \: get \\  \\  \frac{ {x}^{2} }{a}  +  \frac{ {(1 - x)}^{2} }{b}  = \frac{1}{a + b} \\  \\ or \:  \: (a + b)(b {x}^{2}  + a(1 - 2x +  {x}^{2} )) = ab \\  \\ or \:  \:  {(a + b)}^{2}  {x}^{2}  - 2a(a + b)x +  {a}^{2}  + ab = ab \\  \\ or \:  \:  {(a + b)}^{2}  {x}^{2}  - 2a( a+ b)x +  {a}^{2}  = 0 \\  \\ or \:  \:{ ((a + b)x - a)}^{2}  = 0 \\  \\ thus \:  \: (a + b)x - a = 0 \\  \\ or \:  \: x =  \frac{a}{a + b}  \\  \\ so \:  \:  {sin}^{2}  \alpha  =  \frac{a}{a + b}  \\  \\ hence \:  \:  {cos}^{2}  \alpha  = 1 -  {sin}^{2}  \alpha  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 1 -  {( \frac{a}{a + b}) } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{a + b - a}{a + b}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: =  \frac{b}{a + b}  \\  \\ now \:  \:  \: lhs \\  \\  =  \frac{ {sin}^{8} \alpha  }{ {a}^{3} }  +  \frac{ {cos}^{8}  \alpha }{ {b}^{3} }  \\  \\  =  \frac{1}{ {a}^{3} }  {( {sin}^{2} \alpha ) }^{4}  +  \frac{1}{ {b}^{3} }  { {(cos}^{2} \alpha ) }^{4}  \\  \\  =  \frac{1}{ {a}^{3} }  \frac{ {a}^{4} }{( {a + b})^{4} }  +  \frac{1}{ {b}^{3} }  \frac{ {b}^{4} }{ {(a + b)}^{4} } \\  \\  =  \frac{a}{ {(a + b)}^{4} }  +  \frac{b}{ {(a + b)}^{4} }  \\  \\  = \frac{a + b}{ {(a + b)}^{4} }  \\  \\  =  \frac{1}{ {(a + b)}^{3} }  \\  \\  = rhs \:  \: (proved)


TANU81: Nice...
Swarup1998: My pleasure...
Draxillus: gr10 answer bhaiya
Swarup1998: Thanks bro for the question...
Draxillus: bhaiya,really u r great
Draxillus: tusi great ho
Answered by AyUsH1817336403
0

Step-by-step explanation:

\begin{gathered}ans \\ \\ given \: \: \: \frac{ {sin}^{4} \alpha }{a} + \frac{ {cos}^{4} \alpha }{b} = \frac{1}{a + b} \\ \\ or \: \: \frac{ { ({sin}^{2} \alpha ) }^{2} }{a} + \frac{ {(1 - {sin}^{2} \alpha )}^{2} }{b} \\ \\ let \: us \: consider \: {sin}^{2} \alpha = x \\ \\ then \: we \: get \\ \\ \frac{ {x}^{2} }{a} + \frac{ {(1 - x)}^{2} }{b} = \frac{1}{a + b} \\ \\ or \: \: (a + b)(b {x}^{2} + a(1 - 2x + {x}^{2} )) = ab \\ \\ or \: \: {(a + b)}^{2} {x}^{2} - 2a(a + b)x + {a}^{2} + ab = ab \\ \\ or \: \: {(a + b)}^{2} {x}^{2} - 2a( a+ b)x + {a}^{2} = 0 \\ \\ or \: \:{ ((a + b)x - a)}^{2} = 0 \\ \\ thus \: \: (a + b)x - a = 0 \\ \\ or \: \: x = \frac{a}{a + b} \\ \\ so \: \: {sin}^{2} \alpha = \frac{a}{a + b} \\ \\ hence \: \: {cos}^{2} \alpha = 1 - {sin}^{2} \alpha \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 1 - {( \frac{a}{a + b}) } \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{a + b - a}{a + b} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{b}{a + b} \\ \\ now \: \: \: lhs \\ \\ = \frac{ {sin}^{8} \alpha }{ {a}^{3} } + \frac{ {cos}^{8} \alpha }{ {b}^{3} } \\ \\ = \frac{1}{ {a}^{3} } {( {sin}^{2} \alpha ) }^{4} + \frac{1}{ {b}^{3} } { {(cos}^{2} \alpha ) }^{4} \\ \\ = \frac{1}{ {a}^{3} } \frac{ {a}^{4} }{( {a + b})^{4} } + \frac{1}{ {b}^{3} } \frac{ {b}^{4} }{ {(a + b)}^{4} } \\ \\ = \frac{a}{ {(a + b)}^{4} } + \frac{b}{ {(a + b)}^{4} } \\ \\ = \frac{a + b}{ {(a + b)}^{4} } \\ \\ = \frac{1}{ {(a + b)}^{3} } \\ \\ = rhs \: \: (proved)\end{gathered}

ans

given

a

sin

4

α

+

b

cos

4

α

=

a+b

1

or

a

(sin

2

α)

2

+

b

(1−sin

2

α)

2

letusconsidersin

2

α=x

thenweget

a

x

2

+

b

(1−x)

2

=

a+b

1

or(a+b)(bx

2

+a(1−2x+x

2

))=ab

or(a+b)

2

x

2

−2a(a+b)x+a

2

+ab=ab

or(a+b)

2

x

2

−2a(a+b)x+a

2

=0

or((a+b)x−a)

2

=0

thus(a+b)x−a=0

orx=

a+b

a

sosin

2

α=

a+b

a

hencecos

2

α=1−sin

2

α

=1−(

a+b

a

)

=

a+b

a+b−a

=

a+b

b

nowlhs

=

a

3

sin

8

α

+

b

3

cos

8

α

=

a

3

1

(sin

2

α)

4

+

b

3

1

(cos

2

α)

4

=

a

3

1

(a+b)

4

a

4

+

b

3

1

(a+b)

4

b

4

=

(a+b)

4

a

+

(a+b)

4

b

=

(a+b)

4

a+b

=

(a+b)

3

1

=rhs(proved)

HOPE IT'S HELPS YOU .

PLZ BHAI THANKS ME .

I HAVE STARTED NOW PLZ LIKE ME .

THANK YOU BRO .

MARK AS BRAINLIEST .

Similar questions