Math, asked by akshat1710, 9 months ago

Solve: 16x2 – 8a²x + (a4 - b4) = 0 for x

class 10 quadratic equations​

Answers

Answered by selvaraj99941pbw61d
3

Answer:

using formula and solving

Attachments:
Answered by pulakmath007
19

The required solution is

 \boxed{ \:  \: \displaystyle \bf \: x = \frac{{a}^{2}   -   {b}^{2} }{4}, \frac{{a}^{2}  +  {b}^{2} }{4} \:  \: }

Given :

The equation

\displaystyle \sf{ 16 {x}^{2}   - 8 {a}^{2} x + ( {a}^{4} -  {b}^{4} ) = 0 }

To find :

The value of x

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf{ 16 {x}^{2}   - 8 {a}^{2} x + ( {a}^{4} -  {b}^{4} ) = 0 }

Step 2 of 2 :

Find the value of x

\displaystyle \sf{ 16 {x}^{2}   - 8 {a}^{2} x + ( {a}^{4} -  {b}^{4} ) = 0 }

\displaystyle \sf{ \implies }  16 {x}^{2}   - 8 {a}^{2} x +  {a}^{4} -  {b}^{4}  = 0

\displaystyle \sf{ \implies } {(4x)}^{2}   - 2.4x. {a}^{2}  +  {( {a}^{2} )}^{2} -  {b}^{4}  = 0

\displaystyle \sf{ \implies } {(4x -  {a}^{2} )}^{2}-  {b}^{4}  = 0

\displaystyle \sf{ \implies } {(4x -  {a}^{2} )}^{2}-  {( {b}^{2} )}^{2}  = 0

\displaystyle \sf{ \implies } (4x -  {a}^{2}  +  {b}^{2} )(4x -  {a}^{2}  -  {b}^{2} )  = 0

Now 4x - a² + b² = 0 gives

\displaystyle \sf{4x =  {a}^{2}  -  {b}^{2}   }

\displaystyle \sf{ \implies x =  \frac{{a}^{2}  -  {b}^{2} }{4} }

Again 4x - a² - b² = 0 gives

\displaystyle \sf{4x =  {a}^{2} +  {b}^{2}   }

\displaystyle \sf{ \implies x =  \frac{{a}^{2}  +  {b}^{2} }{4} }

Hence the required solution is

\displaystyle \sf \: x = \frac{{a}^{2}   -   {b}^{2} }{4}, \frac{{a}^{2}  +  {b}^{2} }{4}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 1/2 is a root of the quadratic equation x²-mx-5/4=0 , then the value of m is?

https://brainly.in/question/21062028

2.Find the roots of the quadratic equation 6x2 +5x + 1 =0 by method of completing the squares.

https://brainly.in/question/30446963

Similar questions