solve 17, 19 and 23...
...
Answers
my possibility here .
17) x = 2sin∅/( 1+ sin∅ + cos∅)
= 2sin∅( 1+sin∅ -cos∅)/(1+sin∅+cos∅)(1+sin∅ - cos∅)
=2sin∅( 1+sin∅ - cos∅)/{(1+sin∅)² -cos²∅}
{ (1+sin∅)² -cos²∅ = 1+sin²∅+2sin∅-cos²∅ = 2sin²∅ +2sin∅ }
=2sin∅( 1 + sin∅-cos∅)/2sin∅( 1+sin∅)
=( 1 + sin∅ - cos∅)/(1 + sin∅) = x
19 , x = b/a
√{(a + b)/( a - b)} + √{(a - b)/( a + b)}
= √{ ( 1+ b/a)/( 1-b/a)} + √{ ( 1-b/a)/( 1+b/a)}
=√{ 1+x)/( 1-x) } + √{ 1-x)/(1+x}
= { √(x +1)² + √(x -1)²}/√(x² -1)
= 2x/(x² - 1)
23 ) sin∅ + cos∅ = m
sin^6∅ + cos^6∅ = { sin²∅)³ + (cos²∅)³
= (sin²∅ + cos²∅)³ -3sin²∅.cos²∅(sin²∅+ cos²∅)
we know , sin²∅ + cos²∅ = 1
= 1 - 3sin²∅.cos²∅ ------------------(1)
now ,
sin∅ + cos∅ = m
take square both sides
(sin²∅ + cos²∅ )+2sin∅.cos∅ = m²
2sin∅.cos∅ = m² - 1
sin∅.cos∅ = ( m²-1)/ 2
take square both sides
sin²∅.cos²∅ = (m²-1)²/4
put this in eqn (1)
sin^6∅ + cos^6∅ = 1-3sin²∅.cos²∅
= 1 - 3(m² -1 )²/4
= { 4 - 3(m² -1)²}/4 = RHS
some part of question cropped so, I use my possibility here.
17) x = 2sinØ/( 1+ sin Ø + cos)
= - 2sin Ø( 1+sin Ø -cos)/(1+sinØ+cos) (1+sin Ø - Cos )
=2sinø( 1+sino - cosØ){(1+sinØ)? . cosØ}
{ (1+sin)? -cos?Ø = 1+sin?Ø+2sin- = cos?Ø = 2sin?Ø +2sinØ }
=2 sin ( 1 + sin -cos/2 sin ( 1+song)
=(1+ sin Ø - cosØ)/(1+ sinØ) =x
19, x= b/a
V[(a + b)/( a - b)} + V{{a - b)/( a + b)}
= V{ ( 1+ b/a)/( 1-b/a)} + V{ ( 1-b/a)/( 1+b/a)}
=V( 1+x)/( 1-x) } + v{ 1-x)/(1+x}
= { V(x +1)2 + v(x - 1)2}/V1x2 - 1)
= 2x/(x? - 1) =
23) sin Ø + cos = m
sin^60 + cos^6Ø = { sin?Ø)3 + (cos²013
= (sin?Ø + cos?Ø)3 -3sin?Ø.cos?Ø(sin?Ø+ cos?Ø)
we know, sin?Ø + cos20 = 1
= 1 - 3sin?Ø.cos20
now
-(1)
now, sin + cosØ = m
take square both sides
(sin? + cos² )+2sin.cos = m2
2sinØ.cosØ = m? 1
sinØ.cos Ø = (m2-1)/ 2
take square both sides
sin?Ø.cos?Ø = (m²-1)²/4
put this in equation (1)
sin^60 + cos^60 = 1-3sin?Ø.cos
=1 - 3(m? -1)?/4
= {4 - 3(m? -1)?y4 = RHS