SOLVE.................↑↑
Answers
Solution-11:
Answer:
(sin o + cos o ) ( sec o+ cosec o)
=(sin o+ cos o) (1/ cos o + 1/ sin o)
= (sin o + cos o)(sin o+ cos o/sin o. cos o)
=(sin o+ cos o)^2/ sin o . cos o
=1+2sin o cos o/ sin o.cos o
=1/sin o. cos o+2 sin o cos o/ sin o cos o
=1/sin o . 1/cos o+2
=2+cosec o . sin o
√2\√5-√2
6√5-6√2\5-2
6√5-6√2\3
3[2√5-2√2]\1
2√5-2√2.Here, x = – 2 is the root of the equation
3x^2 + 7x + p = 0
⇒ 3(– 2)2 + 7(– 2) + p = 0
⇒ p = 2
Root of the equation x^2 + 4kx + k^2 – k + 2 = 0 are equal.
⇒ b^2 – 4ac = 0
⇒ 16k^2 – 4(k^2 – k + 2) = 0
⇒ 3k^2 + k – 2 = 0
⇒ (3k – 2)(k + 1) = 0
⇒ k = 2 ÷ 3 , − 1
Hey Dear,
◆ Answer -
F = mv^2/r
◆ Explaination -
First, we'll write down known dimensions of given quantities.
[F] = [L1M1T-2]
[v] = [L1T-1]
[m] = [M]
[r] = [L]
Let x, y & z are numbers such that F = k.v^x.m^y.r^z
In dimensional form, this can be written as -
[F] = [v]^x.[m]^y. [r]^z
[L1M1T-2] = [L1T-1]^x.[M]^y.[L]^z
[L1M1T-2] = [L^(x+z).M^(y).T^(-x)
Comparing indexes on both sides -
x + z = 1
y = 1
-x = -2
Solving these equations,
x = 2
y = 1
z = -1
Hence,
F = k.ν^x.m^y.r^z
F = k × v^2 × m^1 × r^-1
F = k.v^2.m/r
F = mv^2/r ...(k=1)
Thus, centripetal force of the particle in UCM is mv^2/r.