Math, asked by Anonymous, 3 months ago

solve:2/8+3/8+1/8...

Tell me the Correct answer with method.​

Answers

Answered by BrainlyRish
23

Given : The Expression : \bf \qquad \longmapsto \dfrac{2}{8} + \dfrac{3}{8} + \dfrac{1}{8} \\\\

Need To Solve : The Expression : \bf \qquad \longmapsto \dfrac{2}{8} + \dfrac{3}{8} + \dfrac{1}{8} \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \dag\:\:\bigg\lgroup \sf{  \dfrac{2}{8} + \dfrac{3}{8} + \dfrac{1}{8} }\bigg\rgroup \\\\

\Large {\gray {\underline {\bf Let's \:Solve \:the \:Expression \::}}}\\

\qquad \longmapsto \sf  \dfrac{2}{8} + \dfrac{3}{8} + \dfrac{1}{8} \\

\qquad \longmapsto \sf  \dfrac{2+ 3}{8} +  \dfrac{1}{8} \\

\qquad \longmapsto \sf  \dfrac{5}{8} +  \dfrac{1}{8} \\

\qquad \longmapsto \sf  \dfrac{5+ 1}{8}    \\

\qquad \longmapsto \sf  \dfrac{6}{8}   \\

⠀⠀⠀⠀⠀[ Canceling both numerator & Denominator by 2 ]

\qquad \longmapsto \sf  \cancel {\dfrac{6}{8}}   \\

\qquad \longmapsto \bf \bigg(   \dfrac{3}{4} \bigg) \qquad \longrightarrow Required \:AnswEr \:\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:Value \:of\:Given\:expression \:is\:\bf{\dfrac{3}{4}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by TheDiamondBoyy
11

\sf\underline\red{QUESTION}

Solve : \bf \qquad \longmapsto \dfrac{2}{8} + \dfrac{3}{8} + \dfrac{1}{8} \\\\

\sf\underline\purple{SOLUTION}

\dag\:\:\bigg\lgroup \sf{  \dfrac{2}{8} + \dfrac{3}{8} + \dfrac{1}{8} }\bigg\rgroup \\\\

\qquad \longmapsto \sf  \dfrac{2}{8} + \dfrac{3}{8} + \dfrac{1}{8} \\

\qquad \longmapsto \sf  \dfrac{2+ 3}{8} +  \dfrac{1}{8} \\

\qquad \longmapsto \sf  \dfrac{5}{8} +  \dfrac{1}{8} \\

\qquad \longmapsto \sf  \dfrac{5+ 1}{8}    \\

\qquad \longmapsto \sf  \dfrac{6}{8}   \\

⠀⠀⠀⠀⠀[ reducing both numerator & Denominator by 2 ]

\qquad \longmapsto \sf  \cancel {\dfrac{6}{8}}   \\

\qquad \longmapsto \bf \bigg(   \dfrac{3}{4} \bigg) \qquad \ \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:Value \:of\:Given\:expression \:is\:\bf{\dfrac{3}{4}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions