Math, asked by kishan8670, 1 year ago

solve 2 sin square theta - 4 equal to 5 cos theta

Answers

Answered by bijitkalita48
9

Step-by-step explanation:

hey mate here is the answer.. hope it helps you ..

Attachments:
Answered by jitumahi435
9

Given:

2\sin^2 \theta - 4 = 5\cos \theta

To solve 2\sin^2 \theta - 4 = 5\cos \theta.

Solution:

∴ 2\sin^2 \theta - 4 = 5\cos \theta

Using the trigonometric identity:

\sin^2 \theta + \cos^2 \theta = 1

\sin^2 \theta = 1 - \cos^2 \theta

2(1 - \cos^2 \theta ) - 4 = 5\cos \theta

2 - 2\cos^2 \theta - 4 = 5\cos \theta

- 2\cos^2 \theta - 2 = 5\cos \theta

⇒ 2\cos^2 \theta + 5\cos \theta + 2 = 0

By factorisation method,

2\cos^2 \theta + 4\cos \theta + \cos \theta + 2 = 0

⇒ 2\cos \theta(\cos \theta + 2) + 1(\cos \theta + 2) = 0

⇒ (2\cos \theta + 1)(\cos \theta + 2) = 0

⇒ 2\cos \theta + 1 = 0 or, \cos \theta + 2 = 0

⇒ 2\cos \theta + 1 = 0 or, \cos \theta + 2 = 0

⇒ 2\cos \theta = - 1 or, \cos \theta = - 2

\cos \theta = \dfrac{-1}{2} [ ∵ \cos \theta = - 2 is not possible]

\cos \theta = \dfrac{-1}{2}

\cos \theta = \cos 120°

⇒ θ = 120°

Thus, θ = 120°

Similar questions