Math, asked by krisdattani05, 1 month ago

Solve 2 sin theta cos theta = 2 - sin theta + 4 cos theta

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\red{\rm :\longmapsto\:2sin\theta cos\theta  = 2 - sin\theta  + 4cos\theta }

can be rewritten as

{\rm :\longmapsto\:2sin\theta cos\theta -  2  + sin\theta  -  4cos\theta  = 0}

can be further re - arranged as

{\rm :\longmapsto\:2sin\theta cos\theta  + sin\theta  - 2 -  4cos\theta  = 0}

\rm :\longmapsto\:sin\theta (2cos\theta + 1) - 2(1 + 2cos\theta ) = 0

\rm :\longmapsto\:sin\theta (2cos\theta + 1) - 2(2cos\theta + 1 ) = 0

\rm :\longmapsto\:(sin\theta - 2) (2cos\theta + 1)= 0

\bf\implies \:sin\theta  =  2 \:  \{rejected \: as \:  - 1 \leqslant sin\theta  \leqslant 1 \}

So,

\rm :\longmapsto\:2cos\theta  + 1 = 0

\rm :\longmapsto\:2cos\theta  =  -  \: 1

\rm :\longmapsto\:cos\theta  \:  =  -  \: \dfrac{1}{2}

\rm :\longmapsto\:cos\theta  \:  = cos  \: \dfrac{2\pi}{3}

We know,

 \purple{\boxed{ \rm{ cosx = cosy\bf\implies \:x = 2n\pi \pm \: y  \:  \forall \: n \in \: Z}}}

So, using this identity, we get

\bf\implies \:\theta  = 2n\pi \:  \pm \: \dfrac{2\pi}{3}  \: \forall \: n \in \: Z

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2} \: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi \: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z \\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y \: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y  \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions