Math, asked by anchal9019, 9 days ago

solve 2^x+2 - 6^x - 2×3^2x+2 = 0​

Answers

Answered by mantan1618
0

Answer:

We have,

2  

2x+2

−6  

x

−2.3  

2x+2

=0

now,

⇒2  

2(x+1)

−6  

x

−2.3  

2(x+1)

=0

⇒4  

(x+1)

−6  

x

−2.9  

(x+1)

=0

⇒4  

x

.4−2  

x

.3  

x

−2.(9  

x

.9)=0

⇒4.(2  

x

)  

2

−2  

x

.3  

x

−18(3  

x  

2

 

)=0

on divide (2  

x  

2

 

) and we get,

⇒  

(2  

x

)  

2

 

4.(2  

x

)  

2

 

−  

(2  

x

)  

2

 

2  

x

.3  

x

 

−18[(  

2

3

)  

x

]  

2

=0

⇒4−(  

2

3

)  

x

−18[(  

2

3

)  

x

]  

2

=0

let, (  

2

3

)  

x

=y−−−−(1)

now,

⇒4−y−18y  

2

=0

on factorize

⇒4−(9−8)y−18y  

2

=0

⇒4−9y+8y−18y  

2

=0

⇒1(4−9y)+2y(4−9y)=0

⇒(4−9y)(1+2y)=0

⇒4−9y=0,1+2y=0

⇒y=  

9

4

→ (choose), y=  

2

−1

 (not choose)

using equation (1)

(  

2

3

​ )  

x

=  

9

4

​⇒(  

2

3

​ )  

x

=(  

3

2

)  

2

on reciprocal

⇒(  

2

3 ​

)  

x

=(  

2

3

)  

−2  

then, comparing,

x=−2

Hence, this is the answer.

Step-by-step explanation:

Similar questions