Math, asked by karensw33, 1 year ago

Solve: 2|x + 7|−4 ≥ 0

Express the answer in set-builder notation.


mc001-1.jpg
mc001-2.jpg
mc001-3.jpg

mc001-4.jpg

Express the answer in interval notation..

mc002-1.jpg

[–9, –5]

(–9, 5)

mc002-2.jpg

Answers

Answered by slicergiza
20

Answer:

{ x | x ≤ -9 or x ≥ -5 ∀ x ∈ R}

(-∞, 9] ∪[-5, ∞)

Step-by-step explanation:

Given inequality,

2|x + 7|−4 ≥ 0

2|x + 7| ≥ 4

|x + 7| ≥2  

⇒  ± (x + 7) ≥ 2,    ( ∵ |x| = x if x > 0 while |x|=-x if x < 0 )

⇒  -(x + 7) ≥ 2 or x + 7 ≥ 2

⇒ x + 7 ≤ -2 or x + 7 ≥ 2     ( a < b ⇒ ca > cb  if c < 0 )

⇒ x ≤ -2 - 7 or x ≥ 2 - 7       ( a < b ⇒  a + c < b + c ∀ c ∈R )

x ≤ -9 or x ≥ -5

⇒ { x | x ≤ -9 or x ≥ -5 ∀ x ∈ R}

or x ∈ (-∞, 9] ∪[-5, ∞)

Learn more :

https://brainly.in/question/1233994

https://brainly.in/question/3321154

Answered by amitnrw
1

Given : 2|x + 7|−4 ≥ 0

To Find : Express the answer in interval notation.

Solution:

2|x + 7| − 4  ≥  0

| x |  = x  if x ≥ 0

      = - x if  x < 0

|x + 7|  = (x + 7)   if   x + 7 ≥ 0 => x ≥ -7

2(x + 7) - 4 ≥  0

=> 2x + 14 - 4  ≥  0

=> 2x + 10  ≥  0

=> 2x  ≥  -10

=> x   ≥  -5

   x ≥ -7

Hence  x   ≥  -5

|x + 7|  = -(x + 7)   if   x + 7 <  0 => x <  -7

2{-(x + 7)} - 4 ≥  0

=> -2x - 14 - 4  ≥  0

=> -2x -18  ≥  0

=> -18  ≥  2x

=> -9   ≥  x

=> x ≤ - 9

x <  -7

Hence  x ≤ - 9

x ≤ - 9 and  x   ≥  -5

x ∈  (-∞ , - 9] ∪ [-5 , ∞)

x ∈ R - (-9 , - 5)

Learn More:

Solve the inequality |X

brainly.in/question/12424683

Solve the following inequality : [tex]displaystyle{dfrac{1-sqrt{21-4x ...

brainly.in/question/12643551

Solve the following system of inequalities graphically 5x+4y≤40,x ...

brainly.in/question/15279588

Similar questions