Math, asked by kavitapaliwal0921, 8 days ago

solve 2(x² + 1/x²)-5(x + 1/x)+6 = 0​

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: solve \: for :   \: value(s) \: of \: x \\  \\ given \: biquadratic \: equation \: is \\ 2(x {}^{2}  +  \frac{1}{x {}^{2} }  \: ) - 5(x +  \frac{1}{x}  \: ) + 6 = 0 \\  \\ 2[(x +  \frac{1}{x} ) {}^{2}  - 2x. \frac{1}{x} ] - 5(x +  \frac{1}{x} ) + 6 =0  \\  \\ 2[(x  +  \frac{1}{x} ) {}^{2}  - 2]  - 5(x +  \frac{1}{x} ) + 6 = 0 \\  \\ let \: here \\ x +  \frac{1}{x}  = t \\  \\ 2(t {}^{2}  - 2) - 5t + 6 = 0 \\ 2t {}^{2}  - 4 - 5t + 6 = 0 \\ 2t {}^{2}  - 5t + 2 = 0 \\ 2t {}^{2}  - 4t - t + 2 = 0 \\ 2t(t - 2) - 1(t - 2) = 0 \\  \\ t - 2 = 0 \:  \: or \:  \: 2t - 1 = 0 \\ t = 2 \:  \: or \:  \: t =  \frac{1}{2}

thus \: then \: resubstituting \\ we \: get \\  \\ x +  \frac{1}{x}  = 2 \:  \: or \:  \: x +  \frac{1}{x}  =  \frac{1}{2}  \\  \\ considering \: first \\ x +  \frac{1}{x}  = 2 \\  \\ x {}^{2}  + 1 = 2x \\ x {}^{2}  - 2x + 1 = 0 \\ (x - 1) {}^{2}  = 0 \\ (x - 1)(x - 1) = 0 \\  \\ x = 1

now \: considering \:  \\ x +  \frac{1}{x}  =  \frac{1}{2}  \\  \\  \frac{x {}^{2} + 1 }{x}  =  \frac{1}{2}  \\  \\ 2(x {}^{2}  + 1) = x \\ 2x {}^{2}  + 2 = x \\ 2x {}^{2}  - x + 2 = 0 \\  \\ comparing \: it \: with \: ax {}^{2}  + bx + c = 0 \\ we \: get \\ a = 2 \\ b =  - 1 \\ c = 2 \\  \\ we \: know \: that \\ Δ = b {}^{2}  - 4ac \\  = ( - 1) {}^{2}  - 4 \times 2 \times 2 \\   = 1 - 16 \\  Δ=  - 15 \\  \\ now \: by \: using \\  \: shreedharacharya \: method \\ we \: get \\  \\ x =  \frac{ - b± \sqrt{b {}^{2}  - 4ac} } {2a}  \\  \\  =  \frac{ - ( - 1)± \sqrt{ - 15} }{2  \times 2}   \\  \\  =  \frac{ - 1 ±  \sqrt{15}   \times  \sqrt{ - 1} }{4}  \\  \\ x =  \frac{1± \sqrt{15} \: i }{4}

Similar questions