Math, asked by aaruhi4, 1 year ago

solve...................





Attachments:

Answers

Answered by nitthesh7
1
 Given:   In an equilateral triangle ΔABC. The side BC is has a point D such that BD = (1/3) BC because BD:DC=2:1

To prove:  9AD2  = 7AB

Construction:  Draw AE ⊥ BC.

Proof :

In a ΔABC and ΔACE

AB = AC ( Given)

∠ABC = ∠ACB (as sides AB=AC)

∠AEB = ∠AEC = 90°

∴ ΔABC ≅ ΔACE ( For RHS criterion)

BE = EC (By C.P.C.T)

BE = EC = BC / 2

In a right angled triangle ADE

AD2 = AE2 + DE2 ---------(1)

In a right angled triangle ABE

AB2 = AE2 + BE2 ---------(2)

From equ (1) and (2) we obtain

⇒ AD2  - AB2 =  DE- BE.

⇒ AD2  - AB2 = (BE – BD)- BE.

⇒ AD2  - AB2 = (BC / 2 – BC/3)– (BC/2)

⇒ AD2  - AB2 = ((3BC – 2BC)/6)– (BC/2)

⇒ AD2  - AB2 = BC/ 36 – BC/ 4

( In a equilateral triangle ΔABC, AB = BC = CA)

⇒ AD= AB2 + AB/ 36 – AB/ 4

⇒ AD= (36AB2 + AB2– 9AB2) / 36

⇒ AD= (28AB2) / 36

⇒ AD= (7AB2) / 9

9AD= 7AB.

Hence Proved.

:) Hope this helps!!!!!!!
Attachments:

nitthesh7: angleABC=
nitthesh7: angleACB
aaruhi4: Kya phir se solve kar sakte h
nitthesh7: was the doubt clear
aaruhi4: No
nitthesh7: why?????
aaruhi4: ok
aaruhi4: thanks again
nitthesh7: my pleasure.
nitthesh7: PLS SUPPORT SYRIANS LOOK AT THEIR DIFFICULTIES IN GOOGLE
LETS SUPPORT SYRIANS LET THE SUPPORT OF INDIA START FROM US

add the above statement in ur ques and ans my request
Similar questions