Solve 26th question.
Attachments:
Answers
Answered by
17
Here is your answer :
Given,
Quadratic equation = ( 2k + 1 )x² - ( 7k + 2 )x + ( 7k - 3 ) = 0
Here,
Coefficient of x² ( a ) = ( 2k + 1 )
Coefficient of x ( b ) = - ( 7k + 2 )
Constant term ( c ) = ( 7k - 3 )
For any quadratic equation to have equal roots, its Discriminat ( D = b² - 4ac ) should be equal to zero.
=> D = 0
=> b² - 4ac = 0
Substitute the value of a, b and c.
=> [ -( 7k + 2 ) ]² - 4( 2k + 1 )( 7k - 3) = 0
=> ( -7k )² + ( -2 )² + 2( -7k ) ( -2 ) - ( 8k + 4 ) ( 7k - 3 ) = 0
=> 49k² + 4 + 28k -8k( 7k - 3 ) - 4( 7k - 3 ) = 0
=> 49k² + 4 + 28k - 56k² + 24k - 28k + 12 = 0
=> 49k² - 56k² + 28k + 24k - 28k + 4 + 12 = 0
=> -7k² + 24k + 16 = 0
=> - ( 7k² - 24k - 16 ) = 0
=> ( 7k² - 24k - 16 ) = 0
=> 7k² - 28k + 4k - 16 = 0
=> 7k( k - 4 ) + 4( k - 4 ) = 0
=> ( k - 4 ) ( 7k + 4 ) = 0
=>(k-4)= 0/(7k + 4 ) , ( 7k + 4 ) = 0/( k - 4 )
=> ( k - 4 ) = 0 , ( 7k + 4 ) = 0
=> k = 4 , 7k = -4
•°• k = 4 , ( -4/7 )
Now,
Quadratic equation = ( 2k + 1)x² - ( 7k + 2 )x + ( 7k - 3 ) = 0
Substitute k = 4,
=> ( 2 × 4 + 1 )x² - ( 7 × 4 + 2 )x + ( 7 × 4 - 3 ) = 0
=> ( 8 + 1 )x² - ( 28 + 2 )x + ( 28 - 3 ) = 0
=> 9x² - 30x + 25 = 0
=> ( 3x )² - 2 × ( 3x ) ( 5 ) + ( 5 )² = 0
Using identity :
[ a² - 2ab + b² = ( a - b )² ]
=> ( 3x - 5 )² = 0
=> ( 3x - 5 ) = √0
=> ( 3x - 5 ) = 0
=> 3x = 5
•°• x = ( 5/3 )
Zeroes = ( 5/3 ) and ( 5/3 ).
When, k = ( -4/7 )
=> ( 2k + 1 )x² - ( 7k + 2 )x + ( 7k - 3 ) = 0
Substitute k = ( -4/7 ),
=> [ 2( -4/7 ) + 1 ]x² - [ 7( -4/7 ) + 2 ]x + [ 7( -4/7 ) - 3 ] = 0
=> [ ( -8/7 ) + 1 ]x² - [ -4 + 2 ]x + ( -4 - 3 ) = 0
=> ( -1/7 )x² - ( -2 )x + ( -7 ) = 0
=> ( -1/7 )x² + 2x - 7 = 0
=> - [ ( 1/7 )x² -2x + 7 ] = 0
=> ( 1/7 )x² - 2x + 7 = 0
=> [ ( 1/√7 )x ]² - 2 [ (1/√7 )x ] ( √7 ) + ( √7 )² = 0
Using identity :
=> [ a² - 2ab + b² = ( a - b )² ]
=> [ ( 1/√7 )x - √7 ]² = 0
=> [ ( 1/√7 )x - √7 ] = 0
=> ( 1/√7 )x = √7
=> x = √7 × √7
•°• x = 7
Zeroes = 7 , 7
If k = 4 then zeroes are (5/3 ) and ( 5/3 ).
If , k = ( -4/7 ) then zeroes are ( 7 ) and ( 7 ).
Hope it helps !!
Given,
Quadratic equation = ( 2k + 1 )x² - ( 7k + 2 )x + ( 7k - 3 ) = 0
Here,
Coefficient of x² ( a ) = ( 2k + 1 )
Coefficient of x ( b ) = - ( 7k + 2 )
Constant term ( c ) = ( 7k - 3 )
For any quadratic equation to have equal roots, its Discriminat ( D = b² - 4ac ) should be equal to zero.
=> D = 0
=> b² - 4ac = 0
Substitute the value of a, b and c.
=> [ -( 7k + 2 ) ]² - 4( 2k + 1 )( 7k - 3) = 0
=> ( -7k )² + ( -2 )² + 2( -7k ) ( -2 ) - ( 8k + 4 ) ( 7k - 3 ) = 0
=> 49k² + 4 + 28k -8k( 7k - 3 ) - 4( 7k - 3 ) = 0
=> 49k² + 4 + 28k - 56k² + 24k - 28k + 12 = 0
=> 49k² - 56k² + 28k + 24k - 28k + 4 + 12 = 0
=> -7k² + 24k + 16 = 0
=> - ( 7k² - 24k - 16 ) = 0
=> ( 7k² - 24k - 16 ) = 0
=> 7k² - 28k + 4k - 16 = 0
=> 7k( k - 4 ) + 4( k - 4 ) = 0
=> ( k - 4 ) ( 7k + 4 ) = 0
=>(k-4)= 0/(7k + 4 ) , ( 7k + 4 ) = 0/( k - 4 )
=> ( k - 4 ) = 0 , ( 7k + 4 ) = 0
=> k = 4 , 7k = -4
•°• k = 4 , ( -4/7 )
Now,
Quadratic equation = ( 2k + 1)x² - ( 7k + 2 )x + ( 7k - 3 ) = 0
Substitute k = 4,
=> ( 2 × 4 + 1 )x² - ( 7 × 4 + 2 )x + ( 7 × 4 - 3 ) = 0
=> ( 8 + 1 )x² - ( 28 + 2 )x + ( 28 - 3 ) = 0
=> 9x² - 30x + 25 = 0
=> ( 3x )² - 2 × ( 3x ) ( 5 ) + ( 5 )² = 0
Using identity :
[ a² - 2ab + b² = ( a - b )² ]
=> ( 3x - 5 )² = 0
=> ( 3x - 5 ) = √0
=> ( 3x - 5 ) = 0
=> 3x = 5
•°• x = ( 5/3 )
Zeroes = ( 5/3 ) and ( 5/3 ).
When, k = ( -4/7 )
=> ( 2k + 1 )x² - ( 7k + 2 )x + ( 7k - 3 ) = 0
Substitute k = ( -4/7 ),
=> [ 2( -4/7 ) + 1 ]x² - [ 7( -4/7 ) + 2 ]x + [ 7( -4/7 ) - 3 ] = 0
=> [ ( -8/7 ) + 1 ]x² - [ -4 + 2 ]x + ( -4 - 3 ) = 0
=> ( -1/7 )x² - ( -2 )x + ( -7 ) = 0
=> ( -1/7 )x² + 2x - 7 = 0
=> - [ ( 1/7 )x² -2x + 7 ] = 0
=> ( 1/7 )x² - 2x + 7 = 0
=> [ ( 1/√7 )x ]² - 2 [ (1/√7 )x ] ( √7 ) + ( √7 )² = 0
Using identity :
=> [ a² - 2ab + b² = ( a - b )² ]
=> [ ( 1/√7 )x - √7 ]² = 0
=> [ ( 1/√7 )x - √7 ] = 0
=> ( 1/√7 )x = √7
=> x = √7 × √7
•°• x = 7
Zeroes = 7 , 7
If k = 4 then zeroes are (5/3 ) and ( 5/3 ).
If , k = ( -4/7 ) then zeroes are ( 7 ) and ( 7 ).
Hope it helps !!
Anonymous:
Let me edit it
Answered by
11
========================
HERE IS YOUR ANSWER ☞
========================
if "k=4" then roots are "5/3 and 5/3"
if "k=-4/7" then roots are 7 and 7
======================
HOPE IT WILL HELP YOU ☺☺☺
======================
DEVIL_KING ▄︻̷̿┻̿═━一
HERE IS YOUR ANSWER ☞
========================
if "k=4" then roots are "5/3 and 5/3"
if "k=-4/7" then roots are 7 and 7
======================
HOPE IT WILL HELP YOU ☺☺☺
======================
DEVIL_KING ▄︻̷̿┻̿═━一
Similar questions