Math, asked by Aloneking18, 7 months ago

solve (2a+b)^2-(2a-b)^3​

Answers

Answered by Anonymous
2

 \underbrace{ \boxed{ \tt Solution ☃}}

 \tt i){(2a + b )}^{2}  -  {(2a - b)}^{3} \\ \tt using \: eq. \:  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} \\ \tt and \\  \tt  {(x - y)}^{3}  =  {x}^{3}  - 3 {x}^{2} y + 3x {y}^{2}  -  {y}^{3}  \\  \downarrow \downarrow \downarrow \downarrow \\\tt (4 {a}^{2}   + 4ab +  {b}^{2} ) \times ( {8a}^{3}  - 12 {a}^{2} b + 6a {b}^{2}  -  {b}^{3} ) \\ \tt multiply \: parenthless \\ \downarrow \downarrow \downarrow \downarrow \\   \tt  {32a}^{5}  - 48 {a}^{4} b + 24 {a}^{3}  {b}^{2}  - 4 {a}^{2}  {b}^{3}     + 32 {a}^{4} b - 48 {a}^{3}  {b}^{2}  + 24 {a}^{2}  b^{3}  - 4a {b}^{4}  + 8 {a}^{3}  {b}^{2}  - 12 {a}^{2}  {b}^{3}  + 6a {b}^{4}  -  {b}^{5}  \\  \tt calculate \: like \: terms. \\  \downarrow \downarrow \downarrow \downarrow \\  \tt 32 {a}^{5}  - 16 {a}^{4} b - 16 {a}^{3}  {b}^{2}  + 8 {a}^{2}  {b}^{3}  + 2a {b}^{4}  -  {b}^{5}  \\   \red { \tt answer} \\ \boxed{ \tt 32 {a}^{5}  - 16 {a}^{4} b - 16 {a}^{3}  {b}^{2}  + 8 {a}^{2}  {b}^{3}  + 2a {b}^{4}  -  {b}^{5}}

Answered by Anonymous
1

Answer:

solve (2a+b)^2-(2a-b)^3

Similar questions