Math, asked by lalithashashikumar74, 9 months ago

solve (2a-b)(2a-b), using suitable identity​

Answers

Answered by anindyaadhikari13
3

\star\:\:\:\bf\large\underline\blue{Question:-}

  • Solve (2a - b)(2a - b) using suitable identity.

\star\:\:\:\bf\large\underline\blue{Solution:-}

(2a - b)(2a - b)

 =  {(2a - b)}^{2}

 =  {(2a)}^{2}  +  {(b)}^{2}  - 2 \times 2a \times b

 = 4 {a}^{2}  +  {b}^{2}  - 4ab

 = 4 {a}^{2}    - 4ab +  {b}^{2}

\star\:\:\:\bf\large\underline\blue{Answer:-}

  • (2a - b)(2a - b) = 4 {a}^{2}  +  {b}^{2}  - 4ab

\star\:\:\:\bf\large\underline\blue{Identity\:Used:-}

  •  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy

\star\:\:\:\bf\large\underline\blue{Other\:Identities:-}

  •  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}
  •  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)
  •  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)
  •  {(x - y)}^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y)
Answered by Anonymous
9

Step-by-step explanation:

(a+b)(a-b)=a^2-b^2

(2ab + b)(2a - b) =  {2a}^{2}  -  {b}^{2}

Similar questions