Math, asked by TANU81, 11 months ago

Solve:- 2cos²x+3sinx=0

#Dont spam​

Answers

Answered by ShivajiK
4
2 Cos[2]x + 3 Sinx = 0
2 ( 1 - Sin[2]x ) + 3 Sinx = 0
2 Sin[2]x - 3 Sinx - 2 = 0
2 Sin[2]x - 4 Sinx + Sinx - 2 = 0
( 2 Sinx + 1 ) ( Sinx - 2 ) = 0

Sinx = -1/2 = Sin 120 => x = 120

Sinx = 2
Answered by Anonymous
8

SOLUTION

 =  > 2 \: cos {}^{2} x + 3 \: sin \: x = 0 \:  \:  \: (sin {}^{2}x + cos {}^{2} x = 1 =  > cos {}^{2} x = 1 - sin {}^{2}x \\   =  > 2( 1 - sin {}^{2}  x) + 3 \: sin \: x = 0 \\  =  > 2 - 2sin {}^{2} x + 3sinx = 0 \\  =  >  - 2sin {}^{2} x + 3sin \: x + 2 = 0 \\ let \: sin \: x = a \\ =  >  - 2 {a}^{2}  + 3a + 2 = 0 \\  =  > 0 = 2 {a}^{2}  - 3a - 2 \\  =  > 2 {a}^{2}  -  3a - 2 = 0 \\  =  > 2 {a}^{2}  - 4a + a - 2 = 0 \\  =  > 2a(a - 2) + 1(a - 2) = 0 \\   =  > (2a + 1) (a - 2) = 0 \\  =  > 2a + 1 = 0 \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \: a - 2 = 0 \\  =  > 2a =  - 1 \:  \:  \: or \:  \:  \: a = 2 \\  =  > a =  -  \frac{1}{2}  \:  \: and \: a \:  = 2 \\  =  > hence \: sin \: x =  -  \frac{1}{2}  \: or \:  \:sin \:x = 2

Value of sin is always between-1 and 1

Hence sin x= 2 is not possible

Therefore

=) sin x= -1/2

hope it helps ✔️

Similar questions