Math, asked by madhu7393, 11 months ago

Solve, 2k + 3 ≤ 7k + 1

Answers

Answered by incrediblekaur
2

Answer:

2k + 3 7k +1

2k -7k 1 - 3

-5k -2

k 2/5

Answered by AbhijithPrakash
8

Answer:

2k+3\le \:7k+1\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:k\ge \dfrac{2}{5}\:\\ \:\mathrm{Decimal:}&\:k\ge \:0.4\\ \:\mathrm{Interval\:Notation:}&\:\left[\dfrac{2}{5},\:\infty \:\right)\end{bmatrix}

Step-by-step explanation:

2k+3\le \:7k+1

\mathrm{Subtract\:}3\mathrm{\:from\:both\:sides}

2k+3-3\le \:7k+1-3

\mathrm{Simplify}

2k\le \:7k-2

\mathrm{Subtract\:}7k\mathrm{\:from\:both\:sides}

2k-7k\le \:7k-2-7k

\mathrm{Simplify}

-5k\le \:-2

\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}

\left(-5k\right)\left(-1\right)\ge \left(-2\right)\left(-1\right)

\mathrm{Simplify}

5k\ge \:2

\mathrm{Divide\:both\:sides\:by\:}5

\dfrac{5k}{5}\ge \dfrac{2}{5}

\mathrm{Simplify}

k\ge \dfrac{2}{5}

Attachments:
Similar questions