solve 2powerX+1 =4PowerX-1
Answers
Answered by
3
Heya dear user !!!
Here is your answer,
================================
![{(2)}^{x + 1} = {(4)}^{x - 1} \\ \\ {(2)}^{x + 1} = {(2)}^{2 \times (x - 1)} \\ \\ {(2)}^{x + 1} = {(2)}^{2x - 2} \\ \\ bases \: \: are \: \: same \: \\ now \: \: equating \: \: their \: \: powers \\ \\ x + 1 = 2x - 2 \\ \\ 1 + 2 = 2x - x \\ \\ 3 = 1x {(2)}^{x + 1} = {(4)}^{x - 1} \\ \\ {(2)}^{x + 1} = {(2)}^{2 \times (x - 1)} \\ \\ {(2)}^{x + 1} = {(2)}^{2x - 2} \\ \\ bases \: \: are \: \: same \: \\ now \: \: equating \: \: their \: \: powers \\ \\ x + 1 = 2x - 2 \\ \\ 1 + 2 = 2x - x \\ \\ 3 = 1x](https://tex.z-dn.net/?f=+%7B%282%29%7D%5E%7Bx+%2B+1%7D++%3D++%7B%284%29%7D%5E%7Bx+-+1%7D++%5C%5C++%5C%5C++%7B%282%29%7D%5E%7Bx+%2B+1%7D++%3D++%7B%282%29%7D%5E%7B2+%5Ctimes+%28x+-+1%29%7D++%5C%5C++%5C%5C++%7B%282%29%7D%5E%7Bx+%2B+1%7D++%3D++%7B%282%29%7D%5E%7B2x+-+2%7D+++%5C%5C+%5C%5C++bases+%5C%3A++%5C%3A+are+%5C%3A++%5C%3A+same+%5C%3A++%5C%5C+now+%5C%3A++%5C%3A+equating+%5C%3A++%5C%3A+their+%5C%3A++%5C%3A+powers+%5C%5C++%5C%5C++x+%2B+1+%3D+2x+-+2+%5C%5C++%5C%5C+1+%2B+2+%3D+2x+-+x+%5C%5C++%5C%5C+3+%3D+1x)
Hence, x = 1
================================
Verification
![L.H.S = {(2)}^{x + 1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = {(2)}^{3 + 1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = {(2)}^{4} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = 2 \times 2 \times 2 \times 2 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = 16 \\ \\ R.H.S = {(4)}^{x - 1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: = {(4)}^{3 - 1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = {(4)}^{2} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = 4 \times 4 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = 16 L.H.S = {(2)}^{x + 1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = {(2)}^{3 + 1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = {(2)}^{4} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = 2 \times 2 \times 2 \times 2 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = 16 \\ \\ R.H.S = {(4)}^{x - 1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: = {(4)}^{3 - 1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = {(4)}^{2} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = 4 \times 4 \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: = 16](https://tex.z-dn.net/?f=L.H.S++%3D++%7B%282%29%7D%5E%7Bx+%2B+1%7D+++%5C%5C+++%5C%5C++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A+++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++++%3D++%7B%282%29%7D%5E%7B3++%2B+1%7D++%5C%5C++%5C%5C++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%3D++%7B%282%29%7D%5E%7B4%7D++%5C%5C++%5C%5C++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%3D+2+%5Ctimes+2+%5Ctimes+2+%5Ctimes+2+%5C%5C++%5C%5C+++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A+%3D+16+%5C%5C++%5C%5C+R.H.S+%3D++%7B%284%29%7D%5E%7Bx+-+1%7D++%5C%5C++%5C%5C+++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A+%3D++%7B%284%29%7D%5E%7B3+-+1%7D++%5C%5C++%5C%5C+++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A+%3D++%7B%284%29%7D%5E%7B2%7D++%5C%5C++%5C%5C+++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A+%3D+4+%5Ctimes+4+%5C%5C++%5C%5C+%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A++%5C%3A+++%3D+16)
Hence, L.H.S = R.H.S ( verified )
================================
Hope it helps.
Here is your answer,
================================
Hence, x = 1
================================
Verification
Hence, L.H.S = R.H.S ( verified )
================================
Hope it helps.
sallu17:
thanks you
Similar questions