Math, asked by sallu17, 1 year ago

solve 2powerX+1 =4PowerX-1

Answers

Answered by MiniDoraemon
3
Heya dear user !!!

Here is your answer,

================================

 {(2)}^{x + 1}  =  {(4)}^{x - 1}  \\  \\  {(2)}^{x + 1}  =  {(2)}^{2 \times (x - 1)}  \\  \\  {(2)}^{x + 1}  =  {(2)}^{2x - 2}   \\ \\  bases \:  \: are \:  \: same \:  \\ now \:  \: equating \:  \: their \:  \: powers \\  \\  x + 1 = 2x - 2 \\  \\ 1 + 2 = 2x - x \\  \\ 3 = 1x

Hence, x = 1

================================

Verification
L.H.S  =  {(2)}^{x + 1}   \\   \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:    =  {(2)}^{3  + 1}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {(2)}^{4}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2 \times 2 \times 2 \times 2 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 16 \\  \\ R.H.S =  {(4)}^{x - 1}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {(4)}^{3 - 1}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {(4)}^{2}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 4 \times 4 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 16

Hence, L.H.S = R.H.S ( verified )

================================

Hope it helps.

sallu17: thanks you
sallu17: (x^a/x^b)^1/ab (x^b/x^c)^1/bc (x^c/x^a)1/bc=1
sallu17: prove that
sallu17: solve it please
sallu17: help me
Similar questions