Math, asked by zainabb4, 3 months ago

Solve 2sin^2 (x + π/3) = 1 for 0<x<2π radians​

Answers

Answered by richapariya121pe22ey
1

Step-by-step explanation:

2 {sin}^{2} (x +  \frac{\pi}{3})  = 1 \\ 1 - 2 {sin}^{2} (x +  \frac{\pi}{3} ) = 0 \\ cos2( x +  \frac{ \pi }{3} ) = 0 \\ cos(2x +  \frac{2\pi}{3} ) = 0 \\ \cos(2x)  \cos( \frac{2\pi}{3} )  -  \sin(2x)  \sin( \frac{2\pi}{3} )  = 0 \\ cos(2x)  \cos( \frac{2\pi}{3} )   =  \sin(2x)  \sin( \frac{2\pi}{3} )  \\  \cos(2x)  \cos(\pi -  \frac{\pi}{3} )  =  \sin(2x)   \sin(\pi -  \frac{\pi}{3} )  \\  \cos(2x) ( -  \cos( \frac{\pi}{3} ) ) =  \sin(2x)  \sin( \frac{\pi}{3} )  \\  \cos(2x) ( -  \frac{1}{2} ) =  \sin(2x) ( \frac{ \sqrt{3} }{2})  \\   \frac{ \sin(2x) }{ \cos(2x) }  =  \frac{ \frac{ - 1}{2} }{ \frac{ \sqrt{3} }{2} }  \\  \tan(2x)  =  -  \frac{1}{ \sqrt{3 } }  \\  \\ now \:  \tan( \frac{\pi}{6} )  =  \frac{1}{ \sqrt{3} }  \\  \tan(2 \times  \frac{\pi}{12} )  =  \frac{1}{  \sqrt{3} }  \\  \tan( \frac{10\pi}{12} )  =  -  \frac{1}{ \sqrt{3} }

x = 10π/12

Similar questions