solve 2sin^2x - sinx -1 greater than zero
Answers
Answered by
1
Step-by-step explanation:
2sin^2x -sinx -1 >0
2sin^2x -(2-1) sinx -1>0
2sin^2x - 2sinx + sinx -1>0
2sinx(sinx-1)+1(sinx -1)>0
(2sinx+1) (sinx-1)>0
if 2sinx +1 >0
2 sinx > -1
1
sinx > - -----
2
sinx> sin (4π/3)
x > 4π/3
if sinx -1>0
sinx > 1
sinx > sin(π/2)
x > π/2
x > 4π/3 and x >π/2
so x>4π/3
Answered by
2
Answer:
Step-by-step explanation:
sinx > 1
sinx > sin(π/2)
x > π/2
x > 4π/3 and x >π/2
so x>4π/3
Similar questions