Math, asked by nagalakshmiachana318, 19 days ago

solve 2sin(y^2)dx+xy cos(y^2)dy=0,y(2)=√π/2

Answers

Answered by lvveni69
0

Answer:

2sin(y

2

)dx+xycos(y

2

)dy=0

Using seperation of variable method,

xycos(y^2)cos(y

2

) dy=-2sin(y^2)dxdy=−2sin(y

2

)dx

\frac{ycos(y^2)}{sin(y^2)}dy=-\frac{2}{x}dx

sin(y

2

)

ycos(y

2

)

dy=−

x

2

dx

Integrating both the side \int ycot(y^2)dy=-\int \frac{2}{x}dx∫ycot(y

2

)dy=−∫

x

2

dx ....(1)

let y^2=t

2

=t

Diffrentiate with respect to x

2ydy=dt

ydy=\frac{dt}{2}

2

dt

Substitute y ^2

2

=t in equation 1

\int \frac{Cot tdt}{2}=-2logx+logc∫

2

Cottdt

=−2logx+logc

\frac{log|sin t|}{2}=logx^{-2}+logc

2

log∣sint∣

=logx

−2

+logc

log|sin (y^2)|^{0.5}=logx^{-2}+logclog∣sin(y

2

)∣

0.5

=logx

−2

+logc

log|sin (y^2)|^{0.5}=logx^{-2}clog∣sin(y

2

)∣

0.5

=logx

−2

c { using loga+logb=logab}

sin(y^2)^{0.5}=\frac{c}{x^2}sin(y

2

)

0.5

=

x

2

c

\sqrt{sin(y^2)}=\frac{c}{x^2}

sin(y

2

)

=

x

2

c

....(2)

at Y(2)=\sqrt{\frac{\Pi}{2}}

2

Π

\sqrt{sin(\frac{\Pi}{2})}=\frac{c}{2^2}

sin(

2

Π

)

=

2

2

c

1=\frac{c}{4}

4

c

c=4

Putting the value of c in equation 2

\sqrt{sin(y^2)}=\frac{4}{x^2}

sin(y

2

)

=

x

2

4

Answered by sruthiusha2203
1

Step-by-step explanation:

this is the correct answer hope it helps you study well

Attachments:
Similar questions