Solve (2sinx-cosx).(1+cosx)=sin²x and get the principle solution
Answers
Answered by
0
Step-by-step explanation:
Given, (2sinx−cosx)(1+cosx)=sin
2
x
⇒(2sinx−cosx)(1+cosx)−sin
2
x=0
⇒(2sinx−cosx)(1+cosx)−(1−cosx)(1+cosx)=0
⇒(1+cosx)(2sinx−1)=0
⇒1+cosx=0or2sinx−1=0
⇒cosx=−1orsinx=
2
1
⇒x=(2n+1)π,n∈Iorsinx=sin
6
π
⇒x=nπ+(−1)
n
6
π
,n∈I
∴ Solution of given equation is (2n+1)π,m∈Iornπ+(−1)
n
6
π
,n∈I
Similar questions