Math, asked by avtarsinghbal29, 5 months ago

solve 2x+1/3x-2=59 and verify the answer.​

Answers

Answered by Swarup1998
1

The value of x is \dfrac{119}{115}.

Step-by-step explanation:

Given, \dfrac{2x+1}{3x-2}=59 ... ... (1)

  • Hint: Transpose (3x - 2) to the right hand side

⇒ 2x + 1 = 59 (3x - 2)

⇒ 2x + 1 = 177x - 118

⇒ 177x - 2x = 1 + 118

  • Hint: Transposing x terms to one side and the numbers to the other side

⇒ 175x = 119

⇒ x = \dfrac{119}{175}

So, the value of x is \dfrac{119}{175}

Checking step:

Putting x=\dfrac{119}{175} in LHS of (1), we get

LHS = \dfrac{2\times\dfrac{119}{175}+1}{3\dfrac{119}{175}-2}

= \dfrac{\dfrac{238}{175}+1}{\dfrac{357}{175}-2}

= \dfrac{238+1\times 175}{357-2\times 175}

= \dfrac{413}{7}

= 59 = RHS

So, the solution is verified.

#SPJ3

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{\dfrac{2x+1}{3x-2}=59}

\underline{\textbf{To find:}}

\textsf{The value of 'x' satisfying}\;\mathsf{\dfrac{2x+1}{3x-2}=59}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{2x+1}{3x-2}=59}

\textsf{This can be written as,}

\mathsf{2x+1=59(3x-2)}

\mathsf{2x+1=177\,x-118}

\textsf{Rearranging terms, we get}

\mathsf{177\,x-2\,x=118+1}

\mathsf{175\,x=118+1}

\mathsf{x=\dfrac{119}{175}}

\implies\boxed{\mathsf{x=\dfrac{17}{25}}}\;\;\;\mathsf{(\because\,reduced\;by\;7)}

\underline{\textbf{Verification:}}

\mathsf{L.H.S}

\mathsf{=\dfrac{2x+1}{3x-2}}

\mathsf{=\dfrac{2\left(\dfrac{17}{25}\right)+1}{3\left(\dfrac{17}{25}\right)-2}}

\mathsf{=\dfrac{\dfrac{34}{25}+1}{\dfrac{51}{25}-2}}

\mathsf{=\dfrac{\dfrac{34+25}{25}}{\dfrac{51-50}{25}}}

\mathsf{=\dfrac{\dfrac{59}{25}}{\dfrac{1}{25}}}

\mathsf{=59}

\mathsf{=R.H.S}

Similar questions