Math, asked by subhambhotika, 7 hours ago

Solve: √(2x ^ 2 - 9x + 25) - √(2x ^ 2 - 9x + 13) = 2​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: \sqrt{ {2x}^{2} - 9x + 25 } -  \sqrt{ {2x}^{2} - 9x + 13 } = 2

To solve this, Let assume that

 \red{\rm :\longmapsto\:{2x}^{2} - 9x = y}

So, given equation can be rewritten as

\rm :\longmapsto\: \sqrt{y + 25} -  \sqrt{y + 13} = 2

\rm :\longmapsto\: \sqrt{y + 25} = 2 +  \sqrt{y + 13}

On squaring both sides, we get

\rm :\longmapsto\:y + 25 =  {(2 +  \sqrt{y + 13} )}^{2}

\rm :\longmapsto\:y + 25 = 4 + (y + 13) + 4 \sqrt{y + 13}

\rm :\longmapsto\:y + 25 = 4 + y + 13 + 4 \sqrt{y + 13}

\rm :\longmapsto\: 25 = 17 + 4 \sqrt{y + 13}

\rm :\longmapsto\: 25 - 17  = 4 \sqrt{y + 13}

\rm :\longmapsto\: 8= 4 \sqrt{y + 13}

\rm :\longmapsto\: 2=  \sqrt{y + 13}

On squaring both sides, we get

\rm :\longmapsto\:4 = y + 13

\rm :\longmapsto \:  y  = 4 -  13

\rm :\longmapsto \:  y  =  - \: 9

On substituting the value of y, we get

\rm :\longmapsto\: {2x}^{2} - 9x =  - 9

\rm :\longmapsto\: {2x}^{2} - 9x +  9 = 0

\rm :\longmapsto\: {2x}^{2} - 6x - 3x +  9 = 0

\rm :\longmapsto\:2x(x - 3) - 3(x - 3) = 0

\rm :\longmapsto\:(2x - 3)(x - 3)= 0

\bf\implies \:x = 3 \:  \:  \:  \: or \:  \:  \:  \: x = \dfrac{3}{2}

Verification :-

Case : - 1

 \red{\rm :\longmapsto\:When \: x = 3}

On substituting, this value in

\rm :\longmapsto\: \sqrt{ {2x}^{2} - 9x + 25 } -  \sqrt{ {2x}^{2} - 9x + 13 } = 2

\rm :\longmapsto\: \sqrt{ {2(3)}^{2} - 9(3) + 25 } -  \sqrt{ {2(3)}^{2} - 9(3) + 13 } = 2

\rm :\longmapsto\: \sqrt{18 - 27 + 25}   -   \sqrt{18 - 27 + 13} = 2

\rm :\longmapsto\: \sqrt{16} -  \sqrt{4}  = 2

\rm :\longmapsto\:4 - 2 = 2

\rm :\longmapsto\:2 = 2

Hence, Verified

Case :- 2

 \red{\rm :\longmapsto\:When \: x \:  =  \: \dfrac{3}{2}}

On substituting the value,

\rm :\longmapsto\: \sqrt{ {2x}^{2} - 9x + 25 } -  \sqrt{ {2x}^{2} - 9x + 13 } = 2

\rm :\longmapsto\: \sqrt{2 \times \dfrac{9}{4}  - 9 \times \dfrac{3}{2} + 25 } - \sqrt{2 \times \dfrac{9}{4}  - 9 \times \dfrac{3}{2} + 1 3} = 2

\rm :\longmapsto\: \sqrt{\dfrac{9}{2}  - \dfrac{27}{2}  + 25} -  \sqrt{\dfrac{9}{2}  - \dfrac{27}{2}  + 13}  = 2

\rm :\longmapsto\: \sqrt{- \dfrac{18}{2}  + 25} -  \sqrt{ - \dfrac{18}{2}  + 13}  = 2

\rm :\longmapsto\: \sqrt{ - 9 + 25}  -  \sqrt{ - 9 + 13} = 2

\rm :\longmapsto\: \sqrt{16} -  \sqrt{4}  = 2

\rm :\longmapsto\:4 - 2 = 2

\rm :\longmapsto\:2= 2

Hence, Verified

Similar questions