Math, asked by Suguna123, 10 months ago

Solve 2x^2+x-4=0 by completing the squares method

Answers

Answered by rajeswaridande96
5

 {2x}^{2}  + x - 4 = 0 \\  {2x}^{2}  + x = 4 \\ divide \: both \: sides \: by \:  {x}^{2} coefficient \\  \frac{ {2x}^{2} }{2}  +  \frac{x}{2}  =  \frac{4}{2}  \\  {x}^{2}  +  \frac{x}{2}  = 2 \\  {x}^{2}  + 2.x. \frac{1}{4}  = 2 \\ add \: ( \frac{1}{4} ) {}^{2}  \: on \: both \: sides \\  {x}^{2}  + 2.x. \frac{1}{4}  + ( \frac{1}{4} ) {}^{2}  = 2 + ( \frac{1}{4} ) {}^{2}  \\ l.h.s. \: is \: in \: the \: form \: of \: (a + b) { }^{2}  \\ (a + b) {}^{2}  = a {}^{2}  + 2ab + b {}^{2} \\ (x +  \frac{1}{4} ) {}^{2}  = 2 +  \frac{1}{16}  \\ (x +  \frac{1}{4} ) {}^{2}  =  \frac{33}{16}  \\ x +  \frac{1}{4}  =  \sqrt{ \frac{33}{16} }  \\ x +  \frac{1}{4}  =    + or - \frac{ \sqrt{33} }{4}  \\  x =  \frac{ \sqrt{33} }{4}  -  \frac{1}{4}  \\ x=  \frac{ \sqrt{33} - 1 }{4}  \\ also \:  \\ x =  \frac{ -  \sqrt{33} }{4}  -  \frac{1}{4}  \\ x =  \frac{ -  \sqrt{33} - 1 }{4}  \\take \: minus \: as \: common \\  x =  \frac{ - ( \sqrt{33}  + 1)}{4}

Hope this helps you mate........

Please mark it as brainliest.........!!!!!!!!

Similar questions