Math, asked by teenagerchoice32, 1 year ago

Solve 2x*2+x-4 find the root by completing the square method

Answers

Answered by umiko28
5

Answer:

<marquee scrollamount=6>pls follow me and mark as brainliest

Step-by-step explanation:

 \sf\red{ {2x}^{2} + x - 4 = 0 } \\  \sf\red{using \: squere \: method} \\  \sf\purple{ =  >  \frac{ {2x}^{2} }{2} +  \frac{x}{2}  +  \frac{ - 4}{2} = 0 }  \\  \sf\purple{ =  >  {x}^{2} +  \frac{x}{2}   - 2 = 0} \\  \sf\blue{ =  >  {x}^{2}  +  \frac{1}{4}x +  { (\frac{1}{4} }^{2}) = 2+ \frac{1}{16}} \\  \sf\blue{  =  > {(x +  \frac{1}{4} )}^{2}  =  \frac{33}{16} } \\  \sf\orange{ =  > x +  \frac{1}{4} =  +  -  \sqrt{ \frac{33}{4} }} \\  \sf\red{ =  > x =  +  \sqrt{ \frac{33}{16} }  -  \frac{1}{4} and \:  -  \sqrt{ \frac{33}{16} }  -  \frac{1}{4} }

\large\boxed{ \fcolorbox{blue}{red}{pls \: follow \: me}}

\large\boxed{ \fcolorbox{purple}{yellow}{mark \: as \: brainlist}}

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x=\frac{-1\pm\sqrt{33}}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {2x}^{2}  + x - 4 = 0 \\  \\ \red{\underline \bold{To \: Find :}} \\    \tt: \implies x = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {2x}^{2}  + x - 4 = 0 \\  \\   \text{Both \: side \: dividing \: by \: coefficient \: of \:  {x}}^{2} \\  \tt:  \implies  {x}^{2}  +  \frac{x}{2}  - 2 = 0 \\  \\  \text{both \: side \: adding \:  }(\frac{b}{2a} )^{2}  \\  \\  \tt \circ  \:  (\frac{b}{2a} )^{2}  =  (\frac{ \frac{1}{2} }{2 \times 1} )^{2}  =  \frac{1}{16}  \\  \\  \tt:  \implies  {x}^{2}  +  \frac{x}{2}  +  \frac{1}{16}  - 2 =  \frac{1}{16}  \\  \\ \tt \circ \:  {x}^{2}  +   \frac{x}{2}  +  \frac{1}{16}  = ( {x +  \frac{1}{4} })^{2}  \\ \\    \tt:  \implies   ({x +  \frac{1}{4} })^{2}  - 2 =  \frac{1}{16}  \\  \\  \tt:  \implies  (x + \frac{1}{4} )^{2}  =  \frac{1}{16}  + 2 \\  \\  \tt:  \implies ( {x +  \frac{1}{4} })^{2}  =  \frac{1 + 32}{16}  \\  \\  \tt:  \implies ( {x +  \frac{1}{4} })^{2}  =  \frac{33}{16}  \\  \\  \tt:  \implies x +  \frac{1}{4}  =   \pm\sqrt{ \frac{33}{16} }  \\  \\  \tt: \implies x =   \pm\frac{ \sqrt{33} }{4}  -  \frac{1}{4}  \\  \\  \green{ \tt:  \implies x =  \frac{ - 1 \pm \sqrt{33} }{4} }

Similar questions