Math, asked by lucifersharma23, 8 months ago

Solve [(2x / 3)+ 1 )] =[ (7x / 15) + 3 ] and find the value of x.​

Answers

Answered by spacelover123
6

Question

Find the value of 'x' in this equation ⇒ \frac{2x}{3}+1=\frac{7x}{15}+3

\rule{300}{1}

Answer

Let's solve your equation step-by-step.

\frac{2x}{3}+1=\frac{7x}{15}+3

Step 1: Simplify both sides of the equation.

\frac{2}{3}x+1=\frac{7}{15}x+3

Step 2: Subtract \frac{7}{15}x from both sides.

\frac{2}{3}x+1 - \frac{7}{15}x =\frac{7}{15}x+3- \frac{7}{15}x

\frac{1}{5}x+1=3

Step 3: Subtract 1 from both sides.

\frac{1}{5}x+1-1=3-1

\frac{1}{5}x=2

Step 4: Multiply both sides by 5.

5\times \frac{1}{5}x=5\times 2

x=10

Let's verify if x=10.

Method 1

Step 1: Simplify the equation.

\frac{2x}{3}+1=\frac{7x}{15}+3

\frac{2}{3}x+1=\frac{7}{15}x+3

Step 2: Subtract \frac{7}{15}x from both sides.

\frac{2}{3}x+1 - \frac{7}{15}x =\frac{7}{15}x+3- \frac{7}{15}x

\frac{1}{5}x+1=3

Step 3: Subtract 1 from both sides.

\frac{1}{5}x+1-1=3-1

\frac{1}{5}x=2

Step 4: Put the value of 'x' and verify.

\frac{1}{5}x=2

\frac{1}{5} \times 10 =2

2=2

Method 2

Step 1: Put the value of 'x' and make sure LHS=RHS

\frac{2x}{3}+1=\frac{7x}{15}+3

\frac{2\times 10 }{3}+1=\frac{7\times 10 }{15}+3

\frac{20 }{3}+1=\frac{70 }{15}+3

\frac{20 }{3}+\frac{1\times 3}{1\times 3 } =\frac{14 }{3}+\frac{3 \times 3 }{1 \times 3}

\frac{20 }{3}+\frac{3}{3 } =\frac{14 }{3}+\frac{9 }{3}

\frac{23 }{3}=\frac{23}{3}

∴LHS=RHS

∴ x=10 in the equation ⇒  \bf \frac{2x}{3}+1=\frac{7x}{15}+3

\rule{300}{1}

Similar questions