Math, asked by shashank181818, 1 year ago

Solve: 2x-3/5+x+3/4=4x+1/7

Answers

Answered by Anonymous
23

\huge{\underline{\underline{\red{\bf{Answer:}}}}}

 \frac{2x - 3}{5}  +  \frac{x + 3}{4} =  \frac{4x + 1}{7}

 \frac{2x}{5}  -  \frac{3}{5}  + \frac{x}{4}  +  \frac{3}{4}  =  \frac{4x}{7}  +  \frac{1}{7}

 \frac{2x}{5}  -  \frac{x}{4}  -  \frac{4x}{7}  =  \frac{1}{7}  +  \frac{3}{5}  -  \frac{3}{4}

 \frac{56x + 35x - 80x}{140}  =  \frac{20 + 84 - 105}{140}

 \frac{11x}{140}  =  \frac{ - 1}{140}

x =   \frac{ - 1}{140}  \div  \frac{11}{140}

x =  \frac{ - 1}{140} \times  \frac{140}{11}

x =  \frac{ - 1}{11}

Checking =

LHS -

 \frac{2x  - 3}{ 5}

 \frac{2( \frac{ - 1}{11}) - 3 }{5} +  \frac{  \frac{ - 1}{11}  + 3}{4}

  \frac{ \frac{ - 2}{11} -  \frac{  3}{1}  }{5}  +  \frac{ \frac{ - 1}{11}  + 3}{4}

 \frac{ \frac{ - 2 - 33}{11} }{5}  + \frac{  \frac{ - 1}{11}  + 3}{4}

 \frac{  \frac{ - 35}{11}  }{5}  + \frac{  \frac{ - 1 }{11} + 3 }{4}

 \frac{ - 35}{11}  \times  \frac{1}{5}  + \frac{  \frac{ - 1}{11}  + 3}{4}

 \frac{ - 7}{11}  + \frac{  \frac{ - 1}{11}  + 3}{4}

 \frac{ - 7}{11}  +  \frac{ \frac{ - 1 + 33}{11} }{4}

  \frac{ - 7}{11}  +  \frac{32}{11}  \div 4

 \frac{ - 7}{11}  +  \frac{32}{11}  \times  \frac{1}{4}

 \frac{ - 7}{11}  +  \frac{8}{11}

 =  \frac{1}{11}

RHS -

 \frac{4x + 1}{7}

 \frac{4( \frac{ - 1}{11}) + 1 }{7}

 \frac{ \frac{ - 4}{11}  + 1}{7}

 \frac{ \frac{ - 4 + 11}{11} }{7}

 \frac{7}{11}  \div 7

 \frac{7}{11}  \times  \frac{1}{7}

 \frac{1}{11}

LHS = RHS

HENCE, VERIFIED

Similar questions