History, asked by Anonymous, 1 month ago

Solve 2x + 3y = 11 and 2x – 4y = -24 and hence find the value of’m’ for which y = mx +3.​

Answers

Answered by Itzcutemuffin
12

▬▬▬ஜ۩۞۩ஜ▬▬▬▬

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

\huge\color{cyan}\boxed{\colorbox{black}{Question ❤}}

Solve 2x + 3y = 11 and 2x – 4y = -24a and hence find the value of’m’ for which y = mx +3.

\huge\color{cyan}\boxed{\colorbox{black}{Answer❤}}

\huge\color{red}\boxed{\colorbox{black}{-1}}

\huge\color{cyan}\boxed{\colorbox{black}{To find}}

Value of m

\huge\color{cyan}\boxed{\colorbox{black}{Solution❤}}

2x + 3y = 11 \:  (eq.\: 1)

2x  \: – \:  4y = -24(eq. \: 2)

subtracting \: eq \: 1from \: 2

2x \:  -   \: 4y - (2x + 3y) = -24 - 11

 =  > 2x  - 4y - 2x - 3y  \\  =  - 35 \\  \\  =  >  \: 7y \:  =  - 35 \\  \\ y \:  =  \frac{35}{7}  \\  \\  =  > y \:  = 5

now, \\  \\for \: the \: value \: of \: x, \\  in \: equation \: 1  \\ putting, \: the \: value  \\ of \: y \:  \\ 2x + 3y = 11

 =  > 2x \:  + 3 \times 5 = 11 \\  \\ (value \: of \: y \:  = 5) \\  \\  =  > 2x \:  +  \: 15 \:  = 11 \\  \\  =  >  \: 2x \:  = 11 - 15 \\  \\ 2x =  - 4 \\  \\  =  > x  =  \frac{4}{2}  \\  \\  =  > x \:= 2

now \: we \: have \: the \: value \\ of \: x \: and \: y \\  \\ so \: putting \: it \: in  \\ y = mx + 3

 =  > 5 = m \times  - 2 +4 \\  \\  =  > 5-3 = m \times -2 \\  \\=> 2 \:  = -2m\\ => \frac{2}{-2}  = m \\ \\=> -1 = m

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬

Answered by OoINTROVERToO
0

\\ \tt \: 2x + 3y = 11 \qquad \quad \: (1) \\ \\ \tt \: 2x - 4y = - 24  \qquad \quad\: (2) \\ \\  \small{ \tt \: From \:  equation \:  (1),  \: we \:  get } \\  \\ \tt \: x = \frac{11 - 3y}{2} \qquad \quad \: (3) \\ \\  \small{ \tt \: Substituting  \: this  \: value \:  in  \: equation  \: (2), \:  we  \: get}  \\  \\ \rm \: 2 \: \bigg( \frac{11 - 3y}{2} \bigg) \: - 4y = - 24 \\ \\ \\ \rm \: 11 - 3y - 4y = - 24 \\ \\ \\  \rm \: - 7y = - 35 \\ \\ \\ \rm \: \frac{ - 35}{ - 7} \\ \\ \\ \implies \tt{ \blue{y = 5}} \qquad \quad \:( 3) \\ \\ \small{ \tt \: Putting \:  this  \: value  \: in  \: equation \:  (3),  \: we  \: get } \\  \\  \\ \tt \: x = \frac{11 - 3 \times 5}{2} = \frac{4}{2} = - 2 \\ \\ \bf{ \orange{Hence, \: x = - 2 \: \: and \: \: y = 5}} \\ \\  \\  \tt \: y = mx + 3 \\ \\  \tt \: 5 = m \times - 2 + 3 \\\\  \gg \huge\boxed{ \red { \frak {m = - 1}}} \\ \\

Similar questions