Math, asked by riyarao, 1 year ago

solve 2x+3y=11 and 2x-4y=-24 and hence find the value of 'm' for which y=mx+3

Answers

Answered by TooFree
32

2x + 3y = 11   ------------- [ 1 ]

2x - 4y = -24------------- [ 2 ]


[ 1 ] - [ 2 ]:

3y - ( - 4y) = 11 - ( -24)

3y + 4y = 11 + 24

7y =35

y = 5


Solve x:

Sub y = 5 into equation [ 1 ]:

2x + 3(5) = 11

2x + 15 = 11

2x = 11 - 15

2x = -4

x = -2


FInd y = mx + 3:

Sub y = 5 and x = -2

5 = m(-2) +3

5 = -2m + 3

-2m = 2

m = -1


Answer: m = -1



Answered by GalacticCluster
8

Answer:

 \\  \tt \: 2x + 3y = 11 \qquad \quad \: (1) \\  \\  \tt \: 2x - 4y =  - 24 \qquad \quad \: (2) \\  \\

From equation (1), we obtain -

 \\  \tt \: x =  \frac{11 - 3y}{2}  \qquad \quad \: (3) \\

Substituting this value in equation (2), we obtain -

 \\  \tt \:  2 \:  \bigg( \frac{11 - 3y}{2} \bigg) \:   - 4y =  - 24 \\  \\  \\  \implies \tt \: 11 - 3y - 4y =  - 24 \\  \\  \\  \implies \tt \:  - 7y =  - 35 \\  \\  \\  \implies \tt \:  \frac{ - 35}{ - 7}  \\  \\  \\  \implies \tt{ \blue{y = 5}} \qquad \quad \:( 3) \\  \\

Putting this value in equation (3), we obtain -

 \\  \tt \: x =  \frac{11 - 3 \times 5}{2} =  \frac{4}{2}   =  - 2 \\  \\  \\   \bf{ \green{Hence, \: x =  - 2 \:  \: and \:  \: y = 5}} \\  \\  \implies \tt \: y = mx + 3 \\  \\  \\  \implies \tt \: 5 = m \times  - 2 + 3 \\  \\  \\  \implies \tt{ \red{m =  - 1}} \\  \\

Similar questions