solve (2x+5)^5 using binomial theorem
Answers
Answered by
1
We know that (a+b)^5 = a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5.
Then, (2x+5)^5 = (2x)^5 + 5(2x)^4 * 5 + 10(2x)^3 * (5)^2 + 10(2x)^4 * (5)^3 + 5 * (2x) * (5)^4 + (5)^5.
= 32x^5 + 400x^4 + 2000x^3 + 5000x^2 + 6250x + 3125.
Hope this helps!
Then, (2x+5)^5 = (2x)^5 + 5(2x)^4 * 5 + 10(2x)^3 * (5)^2 + 10(2x)^4 * (5)^3 + 5 * (2x) * (5)^4 + (5)^5.
= 32x^5 + 400x^4 + 2000x^3 + 5000x^2 + 6250x + 3125.
Hope this helps!
Similar questions