Math, asked by sumitrawat1234t, 22 days ago

Solve: 2x2 -(3 + 7i) x - (3 - 9i) = 0​

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: quadratic \: equation \: is \\ 2x {}^{2}  - (3 + 7i)x -( 3 - 9i) = 0 \\  \\ comparing \: it \: with \: ax {}^{2}  + bx + c = 0 \\ we \: get \\ a = 2 \: ,b =  - (3 + 7i) \: ,c =  - (3 - 9i) \\  \\ so \: applying \\ Δ = b {}^{2}  -4 ac \\  = ( - (3 + 7i)) {}^{2}  \:  -  \: 4 \times 2 \times( -( 3  - 9i)) \\  = (3 + 7i) {}^{2}  + 8(3 - 9i) \\  = 9 + 49i {}^{2}  + 42i + 24 - 72i \\  = 33 + 49i {}^{2}   -  30i \\  = 33 + 49( - 1)  - 30i \\  = 33 - 49  - 30i \\  - 16  - 30i \\  =  - 30i - 16 \\  \\ now \: by \: using \: formula \: method \\ we \: have \\  \\ x =  \frac{ - b \:± \:  \sqrt{b {}^{2} - 4ac }  }{2a }  \\  \\  =  \frac{ -  - (3 + 7i)  \: ± \:  \sqrt{ - 30i - 16} }{(2 \times 2)}  \\  \\  =  \frac{3 + 7i \:± \:  \sqrt{ - 30i - 16}  }{4}  \\  \\

so \: let \: then \\  \\  \sqrt{ - 16 - 30i}  = a + ib \\  \\ squaring \: both \: sides \\ we \: get \\  \\  - 16 - 30i = a {}^{2}  + bi {}^{2}  + 2aib \\  \\ - 16 - 30i = a {}^{2}  + b {}^{2} ( - 1) + 2aib \\  \\  = a {}^{2}  - b {}^{2} +  2aib \\  \\ comparing \: real \: and \: imaginary \: parts \\ we \: get \\  \\ a {}^{2}  - b {}^{2}  =  - 16 \:  \:  \:  \:  \:  \: (1) \\  \\ 2ab =  - 30 \\  \\ ab =  - 15 \\  \\ a =  \frac{ - 15}{b}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

substitute \: value \: of \: a \: in \: (1) \\  \\ a {}^{2}  - b {}^{2}  =  - 16 \\  \\ ( \frac{ - 15}{b} ) {}^{2}  - b {}^{2}  =  - 16 \\  \\ ( \frac{225}{b {}^{2} })  - b {}^{2}  =  - 16 \\  \\ let \: then \:  \\ b {}^{2}  = x \\  \\ hence \: accordingly \\  \\  \frac{225}{x}  - x =  - 16  \\  \\ 225 - x {}^{2}  =  - 16x \\  \\ x {}^{2}  - 16x - 225 = 0 \\  \\ x {}^{2}  - 25x + 9x - 225 = 0 \\  \\( x + 9)(x - 25) = 0 \\  \\ x = 25 \:  \: or \:  \: x =  - 9 \\  \\ but \: if \: we \: take \: x =  - 9 \\  \\ b {}^{2}  =  - 9 \\  \\ b {}^{2}  =  \sqrt{ - 9}  \:  \: ∈ \:  \: i \\  \\ hence \:  \: as \: a,b \: ∈ \:  \: R \\  \\ x =  - 9 \:  \: is \: absurd \\ thus \: x = 25

hence \: then \\ b {}^{2}  = 25 \\   b = ±5 \\  \\ therefore \: then \\    \\ a = ±3 \\ hence \: considering \:  \\ (a   ,b) = (3   , - 5) \\  \\ so \: as \:  \\  \\ x =  \frac{3 + 7i \:± \: ( - 16 - 30i) }{4}  \\  \\  =  \frac{3 + 7i \: ± \: (3 - 5i)}{4}  \\  \\ x =  \frac{3 + 7i + (3 - 5i)}{4}  \:  \: or \:  \: x =  \frac{3 + 7i \:  - (3 - 5i)}{4}  \\  \\  =  \frac{6 + 2i}{4}  \:  \: or \:  \:  =  \frac{7i + 5i}{4}  \\  \\  =  \frac{2(3 + i)}{4}  \:  \:  \: or \:  \:  =  \frac{12i}{4}  \\  \\ x =  \frac{3 + i}{2}  \:  \:  \: or \:  \: \:  x = 3i

Similar questions