Math, asked by hamikamal2008, 8 months ago

Solve 2x2 + 5root3 + 6 = 0 by the completing square method

Answers

Answered by Anonymous
12

Answer:

Roots of the equation are - √3/2 and - 2√3.

Step-by-step explanation:

Looks like the equation is 2x² + 5√3x + 6 = 0

Given Equation :

⇒ 2x² + 5√3x + 6 = 0

Dividing on both sides by 2

⇒ 2x²/2 + 5√3/2 + 6/2 = 0

⇒ x² + 5√3/2 + 3 = 0

Transposing 3 to RHS

⇒ x² + 5√3/2 = -3

It can be written as

⇒ x² + 2( x )( 5√3/4 ) = - 3

Adding ( 5√3/4 )² on both sides

⇒ x² + 2( x )( 5√3/4 ) + ( 5√3/4 )² = - 3 + ( 5√3/4 )²

Since ( a + b )² = a² + 2ab + b²

⇒ ( x + 5√3/4 )² = - 3 + 75/16

⇒ ( x + 5√3/4 )² = ( - 48 + 75 ) / 16

⇒ ( x + 5√3/4 )² = 27/16

Taking square root on both sides

⇒ x + 5√3/4 = ± √27/16

⇒ x + 5√3/4 = ± √27 / √16

⇒ x + 5√3/4 = ± 3√3/4

⇒ x + 5√3/4 = 3√3/4    OR     x + 5√3/4 = - 3√3/4

⇒ x = 3√3/4 - 5√3/4      OR     x = - 3√3/4 - 5√3/4

⇒ x = - 2√3/4    OR    x = - 8√3/4

⇒ x = - √3/2    OR     x = - 2√3

Hence - √3/2 and - 2√3 are the roots of the equation.

Answered by topwriters
2

x = -√3/2 or - 2√3

Step-by-step explanation:

2x² + 5√3x + 6 = 0

Dividing both sides by 2, we get: x² + 5√3/2 x + 3 = 0

 x² + 5√3/2 x = -3

Let's add  (5√3/4 )² on both sides of the equation.

 x² + 2[5√3/4]x + (5√3/4 )² = -3 +  (5√3/4 )²

From the expression (a + b)² = a² + 2ab + b², we can rewrite the above as:

  ( x + 5√3/4 )² = -3 + 25*3/16

   ( x + 5√3/4 )² = (-48 + 75) / 16

   ( x + 5√3/4 )² = 27/16

Therefore x + 5√3/4 )² = √27/16

   x + 5√3/4 = ± 3√3/4

When x + 5√3/4 = +3√3/4,   x = 3√3/4 - 5√3/4

Therefore x =  -√3/2.

When x + 5√3/4 = -3√3/4,   x = -3√3/4 - 5√3/4

Therefore x =  -2√3

Hence solved. x = -√3/2 or - 2√3

Similar questions