Math, asked by bhatgvijaya, 9 months ago

Solve 2x2 - 7x + 3 = 0 by completing square method​

Answers

Answered by prernagandhi045
1

Answer:

let 2x2 -7x+k=(x-a)2

2x2-7x+k=x2-2ax+a2

comparing coefficients of x and constants on both sides

2a=7

a=7/2

and

k=a2

k=7/22

k=49/4

now,

(2x2-7x+49/4)-49/4+3=0

3x2-7x+49/4=49+12/4

(x-7/2)2=61/4

(x-7/2)2=root61/4

(x-7/2)2=root 61/2

(x-7/2)=+-root61/2...(Taking square on both sides)

x-7/2=root 61/2

or x-7/2 =root61/2

x=7-root 61/2

or x=7-root 61/2

Step-by-step explanation:

Hope this helps you

Mark me as brainlist

Answered by ItzAditt007
14

AnswEr:-

Your Answer is 1/2 And 3.

ExplanaTion:-

Given equation:-

  • \tt\leadsto 2x^2-7x+3.

To Find:-

  • The Value of x by Completing square method.

ID Used:-

\\ \tt\longrightarrow(a - b) {}^{2}  =  {a}^{2}  - 2ab +  {b}^{2} .\\

So lets solve the given equation:-

\\ \\ \tt\mapsto2 {x}^{2}  - 7x + 3 = 0.  \\  \\  \tt\mapsto \dfrac{\cancel2 {x}^{2} }{\cancel2}  -  \frac{7x}{2}  +  \frac{3}{2}  =  \frac{0}{2} . \\ \\ \rm(divding \:  \: the \:  \: whole \:  \: equation \:  \: by \:  \: 2). \\  \\   \tt\mapsto x {}^{2}  -  \frac{7x}{2}  +  \frac{3}{2}  =0. \\  \\   \tt\mapsto {x}^{2}  -  \frac{7x}{2} =  -  \frac{3}{2} .   \\  \\ \tt\mapsto {x}^{2}  -( 2 \times  x \times \frac{7}{4} ) =  -  \frac{  3}{2} .  \\  \\ \tt\mapsto {(x)}^{2}  - (2 \times x \times  \frac{7}{4} ) + ( \frac{7}{4}  ) {}^{2}  =   - \frac{3}{2}  + ( \frac{7}{4} ) {}^{2} .  \\  \\ \rm(adding \: ( \frac{7}{4}) {}^{2}  \:  \: to \:  \: both \:  \: sides) . \\  \\  \tt\mapsto(x -  \frac{7}{4} ) {}^{2}  = ( \frac{7}{4}) {}^{2}  -  \frac{3}{2}.  \\ \\   \tt\mapsto(x -  \frac{7}{4} ) {}^{2}  = \frac{49}{16}  -  \frac{3}{2} . \\  \\ \tt\mapsto(x -  \frac{7}{4} ) {}^{2}  = \frac{49 - 24}{16} .\\  \\ \rm(by \:  \: taking \:  \: lcm).  \\  \\ \tt\mapsto(x -  \frac{7}{4} ) {}^{2}  =  \frac{25}{36} . \\  \\ \tt\mapsto(x -  \frac{7}{4} ) {}^{\cancel2}  =  \pm(\frac{5}{6} ){}^{\cancel2}.  \\  \\ \tt\mapsto x -  \frac{7}{4}  =  \pm\frac{5}{6} . \\  \\\tt\mapsto x = \pm \frac{5}{4}  +  \frac{7}{4} .  \\  \\ \tt\mapsto x =  \frac{7 - 5}{4}  \:  \:  \:  \: or \:  \:  \:  \: x =  \frac{7 + 5}{4} .\\  \\ \tt\mapsto x =  \frac{2}{4}  \:  \:  \:  \: or \:  \:  \:  \: x =  \frac{12}{4} . \\  \\ \tt\mapsto\underline{\underline {x =  \frac{1}{2} \:  \:  \:  \: or \:  \:  \:  \: x = 3.}}

Therefore the required values of x are \tt\dfrac{1}{2} And 3.

Similar questions