Math, asked by maitubanerjee5714, 9 months ago

Solve √2x²+ 7x +5√2 = 0 by quadratic formula

Answers

Answered by fab13
58

Answer:

 \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  = 0 \\   = > x =   \frac{ - 7 \pm \sqrt{ {7}^{2} - 4 \times  \sqrt{2}   \times 5 \sqrt{2} } }{2 \times  \sqrt{2} } \\  =  > x =  \frac{ - 7 \pm \sqrt{49 - 40} }{2 \sqrt{2} }  \\  =  > x =  \frac{ - 7 \pm \sqrt{ 9 } }{2 \sqrt{2} }  \\  =  > x =  \frac{ - 7 \pm3}{2 \sqrt{2} }  \\   = > x =  \frac{ - 7 + 3}{2 \sqrt{2} }  \: or \:  \frac{ - 7 - 3}{2 \sqrt{2} }  \\  =  > x =  \frac{ - 4}{2 \sqrt{2} }  \: or \:  \:  \frac{ - 10}{2 \sqrt{2} }  \\  =  > x =  -  \sqrt{2}  \: or \:  \frac{5 \sqrt{2} }{2}

Answered by rgbhv123
21

Answer:

 \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  = 0 \\  \sqrt{2} {x}^{2} + 2x + 5x + 5 \sqrt{2}  = 0 \\ \sqrt{2}x(x +  \sqrt{2} ) + 5(x +  \sqrt{2}) = 0 \\  \sqrt{2}x + 5)(x +  \sqrt{2}) = 0 \\ x =  \frac{ - 5}{ \sqrt{2}  } \: or -  \sqrt{2}   \: is \: the \: answer

note- √2×5√2=5×2=10

7+2=10 this is by factorization method

Similar questions
Math, 1 year ago