Math, asked by rk8757755491, 1 month ago

Solve : (2xy cos x
2
– 2xy + 1) dx + (sin x
2
– x
2
) dy = 0

Answers

Answered by divyanshusinghd16
0

Answer:

The solution is

\sf{(2xy \cos {x}^{2} - 2xy + 1)dx + ( \sin {x}^{2} - {x}^{2} )dy = 0}(2xycosx

2

−2xy+1)dx+(sinx

2

−x

2

)dy=0

EVALUATION

\sf{(2xy \cos {x}^{2} - 2xy + 1)dx + ( \sin {x}^{2} - {x}^{2} )dy = 0}(2xycosx

2

−2xy+1)dx+(sinx

2

−x

2

)dy=0

\sf{ \implies \: (2xy \cos {x}^{2}dx + \sin {x}^{2}dy) -( 2xy dx +{x}^{2} dy ) + 1.dx = 0}⟹(2xycosx

2

dx+sinx

2

dy)−(2xydx+x

2

dy)+1.dx=0

\sf{ \implies \: d( y\sin {x}^{2}) -d( {x}^{2} y ) + 1.dx = 0}⟹d(ysinx

2

)−d(x

2

y)+1.dx=0

On integration we get

\displaystyle\sf{ \implies \int d( y\sin {x}^{2}) - \int \: d( {x}^{2} y ) + \int 1.dx = 0}⟹∫d(ysinx

2

)−∫d(x

2

y)+∫1.dx=0

\displaystyle\sf{ \implies y\sin {x}^{2} - {x}^{2} y + x = c}⟹ysinx

2

−x

2

y+x=c

Where C is integration constant

FINAL ANSWER

Hence the required solution is

\sf{ y\sin {x}^{2} - {x}^{2} y + x = c}ysinx

2

−x

2

y+x=c

Similar questions