solve 2y^2+9y+10=0 by complete ing square method?
Answers
Answered by
92
Heya frnd.!!!
Here's your answer...
⭐ QUADRATIC EQUATIONS ⭐
2y² + 9y + 10 = 0
=> 2 ( y² + 9/2y + 5) = 0
=> y² + 9/2y + 5 = 0
=> y² + 9/2y = -5
=> y² + 9/2y + 81/¹6 = -5 + 81/4
=> (y + 9/4)² = 1/16
=> (y + 9/4) = ± 1/4
=> (y + 9/4) = 1/4 or (y + 9/4) = -1/4
=> y = -8/4 or y = -10/4
=> y = -2 or y = -5/2
Hope this would help you!!!
Here's your answer...
⭐ QUADRATIC EQUATIONS ⭐
2y² + 9y + 10 = 0
=> 2 ( y² + 9/2y + 5) = 0
=> y² + 9/2y + 5 = 0
=> y² + 9/2y = -5
=> y² + 9/2y + 81/¹6 = -5 + 81/4
=> (y + 9/4)² = 1/16
=> (y + 9/4) = ± 1/4
=> (y + 9/4) = 1/4 or (y + 9/4) = -1/4
=> y = -8/4 or y = -10/4
=> y = -2 or y = -5/2
Hope this would help you!!!
Answered by
22
Answer:
- 2 OR - 5 / 2
Step-by-step explanation:
Given :
p ( y ) = 2 y² + 9 y + 10 = 0
Dividing by coefficient of y² :
⇒ 2 / 2 y² + 9 / 2 y + 10 / 2 = 0 / 2
⇒ y² + 9 / 2 y + 5 = 0
Now transfer 5 [ constant term ] R.H.S. side :
⇒ y² + 9 / 2 y = - 5
Now Adding ( 1 / 2 × coefficient of y )²
i.e. ( 9 / 4 )² = 81 / 16
⇒ y² + 9 / 2 y + 81 / 16 = 81 / 16 - 5
⇒ y² + 2 . 9 / 4 y + ( 9 / 4 )² = 1 / 16
⇒ ( y + 9 / 4 )² = ( 1 / 16 )
⇒ ( y + 9 / 4 ) = ± ( 1 / 4 )
Value of y as :
y + 9 / 4 = 1 / 4
y = 1 / 4 - 9 / 4
y = - 8 / 4
y = - 2
OR
y + 9 / 4 = - 1 / 4
y = - 9 / 4 - 1 / 4
y = - 10 / 4
y = - 5 / 2 .
Therefore , the value of y is ' - 2 ' OR ' - 5 / 2 ' .
Similar questions