Math, asked by hariharan00174, 2 months ago

solve 2y'-(y/x)=y²/x² using Bernoulli equation​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

2 \frac{dy}{dx}  -  \frac{y}{x}  =  \frac{ {y}^{2} }{ {x}^{2} }   \\

 \implies \frac{2}{ {y}^{2} }  \frac{dy}{dx}  -  \frac{1}{yx}  =  \frac{ 1 }{ {x}^{2} }   \\

Let \:  -  \frac{1}{y}  = t \\  \implies \frac{1}{ {y}^{2} }  \frac{dy}{dx}  =  \frac{dt}{dx}

 \implies 2 \frac{dt}{dx}   + \frac{t}{x}  =  \frac{ 1 }{ {x}^{2} }   \\

 \implies  \frac{dt}{dx}   + \frac{t}{2x}  =  \frac{ 1 }{ {2x}^{2} }   \\

l.F. =  {e}^{ \int \frac{dx}{2x} } =  {e}^{\frac{1}{2} ln(x)  }  =  \sqrt{x}   \\

Now,

 \sqrt{x} .t =  \int \frac{ \sqrt{x} }{2 {x}^{2} } dx \\

  \implies\sqrt{x} .t =  \frac{1}{2}  \int \frac{ 1}{ {x}^{ \frac{3}{2} }  } dx \\

  \implies\sqrt{x} .t =  \frac{1}{2}   (\frac{ {x}^{ -  \frac{3}{2} + 1 } }{ -  \frac{3}{2}  + 1} ) \\

  \implies2\sqrt{x} .t =    (\frac{ {x}^{ -  \frac{1}{2} } }{ -  \frac{1}{2}  } ) + c \\

  \implies2\sqrt{x} .t =     - \frac{2}{ \sqrt{x} } + c \\

  \implies2\sqrt{x}. \frac{1}{y}  =     - \frac{2}{ \sqrt{x} } + c \\

  \implies\frac{1}{y}  =     - \frac{1}{ x} +  \frac{c}{2 \sqrt{x} } \\

Similar questions