solve (3+log343)/(2+1/2log(49/4)+1/3log(1/125)
Answers
Answer:
Step-by-step explanation:
Answer:
3
Step-by-step explanation:
\dfrac{3+\log _{10}\left(343\right)}{2+\dfrac{1}{2}\log_ {10}\left(\dfrac{49}{4}\right)+\dfrac{1}{3}\log _{10}\left(\dfrac{1}{125}\right)}
\dfrac{1}{3}\log_ {10}\left(\dfrac{1}{125}\right)
\dfrac{1}{3}\log _{10}\left(\dfrac{1}{125}\right)
\mathrm{Apply\:log\:rule}:\quad \log _a\left(\dfrac{1}{x}\right)=-\log _a\left(x\right)
=-\log_ {10}\left(125\right)
\mathrm{Rewrite\:}125\mathrm{\:in\:power-base\:form:}\quad 125=5^3
=-\log _{10}\left(5^3\right)
\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)
\log_ {10}\left(5^3\right)=3\log _{10}\left(5\right)
=-3\log_ {10}\left(5\right)
=\dfrac{1}{3}\left(-3\log _{10}\left(5\right)\right)
\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a
=-\dfrac{1}{3}\cdot \:3\log_ {10}\left(5\right)
\mathrm{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}
=-\dfrac{1\cdot \:3}{3}\log _{10}\left(5\right)
\mathrm{Cancel\:the\:common\:factor:}\:3
=-\log_ {10}\left(5\right)\cdot \:1
\mathrm{Multiply:}\:\log _{10}\left(5\right)\cdot \:1=\log_ {10}\left(5\right)
=-\log _{10}\left(5\right)
=\dfrac{3+\log_ {10}\left(343\right)}{2+\dfrac{1}{2}\log _{10}\left(\dfrac{49}{4}\right)-\log_ {10}\left(5\right)}
\log _{10}\left(343\right)
\log_ {10}\left(343\right)
\mathrm{Rewrite\:}343\mathrm{\:in\:power-base\:form:}\quad 343=7^3
=\log _{10}\left(7^3\right)
\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)
\log_ {10}\left(7^3\right)=3\log _{10}\left(7\right)
=3\log_ {10}\left(7\right)
=\dfrac{3+3\log _{10}\left(7\right)}{2+\dfrac{1}{2}\log_ {10}\left(\dfrac{49}{4}\right)-\log _{10}\left(5\right)}
\dfrac{3+3\log_ {10}\left(7\right)}{2+\dfrac{1}{2}\log _{10}\left(\dfrac{49}{4}\right)-\log_ {10}\left(5\right)}
\mathrm{Apply\:log\:rule}:\quad \:a\log _c\left(b\right)=\log _c\left(b^a\right)
\dfrac{1}{2}\log_ {10}\left(\dfrac{49}{4}\right)=\log _{10}\left(\left(\dfrac{49}{4}\right)^{\dfrac{1}{2}}\right)
=\dfrac{3+3\log_ {10}\left(7\right)}{2+\log _{10}\left(\sqrt{\dfrac{49}{4}}\right)-\log_ {10}\left(5\right)}
\mathrm{Apply\:log\:rule}:\quad \log _c\left(a\right)-\log _c\left(b\right)=\log _c\left(\dfrac{a}{b}\right)
\log_ {10}\left(\left(\dfrac{49}{4}\right)^{\dfrac{1}{2}}\right)-\log _{10}\left(5\right)=\log_ {10}\left(\dfrac{\sqrt{\dfrac{49}{4}}}{5}\right)
=\dfrac{3+3\log _{10}\left(7\right)}{2+\log_ {10}\left(\dfrac{\sqrt{\dfrac{49}{4}}}{5}\right)}
\dfrac{\left(\dfrac{49}{4}\right)^{\dfrac{1}{2}}}{5}
\dfrac{\sqrt{\dfrac{49}{4}}}{5}
\sqrt{\dfrac{49}{4}}
\mathrm{Apply\:radical\:rule\:}\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0
=\dfrac{\sqrt{49}}{\sqrt{4}}
=\dfrac{7}{2}
=\dfrac{\dfrac{7}{2}}{5}
\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{\dfrac{b}{c}}{a}=\dfrac{b}{c\:\cdot \:a}
=\dfrac{7}{2\cdot \:5}
\mathrm{Multiply\:the\:numbers:}\:2\cdot \:5=10
=\dfrac{7}{10}
=\dfrac{3+3\log _{10}\left(7\right)}{2+\log_ {10}\left(\dfrac{7}{10}\right)}
\dfrac{3+3\log _{10}\left(7\right)}{2+\log_ {10}\left(\dfrac{7}{10}\right)}
\log _{10}\left(\dfrac{7}{10}\right)
\log_ {10}\left(\dfrac{7}{10}\right)
\mathrm{Apply\:log\:rule}:\quad \log _c\left(\dfrac{a}{b}\right)=\log _c\left(a\right)-\log _c\left(b\right)
\log_ {10}\left(\dfrac{7}{10}\right)=\log _{10}\left(7\right)-\log_ {10}\left(10\right)
=\log _{10}\left(7\right)-\log_ {10}\left(10\right)
\mathrm{Simplify}\:\log _{10}\left(10\right)
\log_ {10}\left(10\right)
\mathrm{Apply\:log\:rule}:\quad \log _a\left(a\right)=1
=1
=\log_ {10}\left(7\right)-1
=\dfrac{3+3\log _{10}\left(7\right)}{2+\log_ {10}\left(7\right)-1}
\mathrm{Subtract\:the\:numbers:}\:2-1=1
=\dfrac{3+3\log _{10}\left(7\right)}{\log_ {10}\left(7\right)+1}
\dfrac{3+3\log _{10}\left(7\right)}{\log_ {10}\left(7\right)+1}
\mathrm{Refine\:to\:a\:decimal\:form}
=3